• Title/Summary/Keyword: Densimetric Froude Similarity

Search Result 3, Processing Time 0.02 seconds

Vertical Buoyant Jet in Tidal Water -Crossflowing Environment- (흐름 수역(水域)에서 연직상향부력(鉛直上向浮力)?)

  • Yoon, Tae Hoon;Cha, Young Kee;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 1987
  • A plane buoyant jet discharged vertically upward into a crossflow is analyzed by numerical solution of the governing equations of continuity, momentum and constituent transport. The turbulent transport is modelled by the Prandtl's mixing length theory. In the numerical solution procedure, the governing equations are transformed by stream function and vorticity transport, non-dimensionalyzed by discharge velocity, slot width, and parameters representing flow characteristics, and solved by Gauss-Seidel iteration method with successive underrelaxation. The numerical experiments were performed for the region of established flow of buoyant jet in the range of discharge densimetric Froude number of 4 to 32 and in the range of velocity ratio of 8 to 15, which is the ratio of discharge velocity to crossflow velocity. Variations of velocities and temperatures, flow patterns and vorticity patterns of receiving water due to buoyant jet were investigated. Also investigated are the effects of velocity ratio and discharge densimetric Froude number on the trajectories of buoyant jet. Computed are velocities, temperatures and local densimetric Froude numbers along the trajectory of the buoyant jet. Spreading rate and dispersion ratio were analyzed in terms of discharge densimetric Froude number, local densimetric Froude number and distance from the source along the jet trajectory. It was noted that the similarity law holds in both the profiles of velocity and temperatures across the jet trajectory and the integral type analysis of Gaussian distribution is applicable.

  • PDF

Visualization of Smoke Flow in the Subway Fire (지하철 화재발생시 역사내 화재연기 거동 가시화 연구)

  • Choi Chang Jin;Jung Hae Gon;Kim Sang Moon;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.64-68
    • /
    • 2005
  • In this study, the smoke flows of the inner subway station were visualized through a numerical analysis and visualization experiment in the subway fire. A transparent acrylic model was designed and installed as 1:25th scale-down as the actual subway station by using geometrical similarity The properties of subway fire were reconstructed according to Densimetric Froude Similarity. The 47 to 53 ratio of the mixed air and Helium was inputted in the inner acrylic model to describe 1MW fire intensity with reference to the experiment paper. For the same time, the fire smoke from a smoke generator was inputted in the inner acrylic model with the mixture. At this time, the buoyancy effect of Helium gas went up the smoke to the acrylic model. When the sheet beam of Ar-lon laser was given out to the top and stair of subway model, the digital camcorder took the images of the scattered cluster of smoke particles when applying the smoke management system and PSD.

  • PDF

Buoyant Slot Jets in Flowing Environment (가로흐름에 방류(放流)되는 평면부력(平面浮力)?)

  • Yoon, Tae Hoon;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.53-60
    • /
    • 1988
  • The behavior of plane buoyant jet issuing vertically upwards into cross flow is analysed by experiments and integral scheme. The integral scheme is based on the self similarity and characteristic length scales to governing equations of continuity, momentum and constituent transport equation, in the horizontal and vertical flow region, respectively. Jet trajectories and the temperature distributions of jet centerlines obtained from experiments are analysed for various velocity ratios and densimetric Froude numbers. It was found that the analytical results about the trajectories and temperatures of jet center lines agree with the experiments and can be expressed as power laws.

  • PDF