• Title/Summary/Keyword: Densification Process

Search Result 301, Processing Time 0.031 seconds

Difference of Calendering and Dochim Effects on Paper Surface Properties

  • Seo, Yung-Bum;Jun, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.26-31
    • /
    • 2007
  • Hanji is a traditional Korean handmade paper, which has been known in ancient Far East as excellent quality calligraphic paper for more than 1,500 year. Hanji is mostly made of Korean paper mulberry bast fibers, and if properly processed, normally lasts for more than 1,000 years with significant strength and still recognizable calligraphic writings or drawings on it. Dochim is a special way of Hanji calendering process, but is turned out to be quite different from modern calendering (machine calendering) in several aspects. In Dochim process, mechanical impacts were applied vertically to the surface of papers. Compared to the modern calendering, Dochim increased paper gloss much more, but paper smoothness a little less. By the Dochim process, densification occurred and the degree of densification was more sensitive to the fiber type in the Dochim process than in the calendering method.

Film Boiling Chemical Vapor Infiltration of C/C Composites: Influence of Mass and Thermal Transfers

  • Delhaes, P.;Trinquecoste, M.;Derre, A.;Rovillain, D.;David, P.
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.163-167
    • /
    • 2003
  • The "Film boiling" Chemical Vapor Infiltration (CVI) process is a rapid densification one developed in particular for the elaboration of carbon/carbon composite materials. In order to optimize this new thermal gradient process, we have carried out several studies, on one hand, about the nature of the complex chemical reactions in a confined medium, and on the other hand, relative to the role of heat and mass transfers inside the preform. We show in this study that the introduction of a permeable sheath around the preform leads to hybrid liquid/gas CVI process which presents the advantages of very high densification rates associated with a moderate input energy.

  • PDF

Densification Mechanism of NITE-SiC and $SiC_f/SiC$ Composites

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun;Park, Jun-Soo;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.181-184
    • /
    • 2006
  • Nano Infiltration Transient Eutectic Phase - Silicon Carbide (NITE-SiC) and $SiC_f/SiC$ composite have been fabricated by a Hot Pressing (HP) process, using SiC powder with an average size of about 30nm. Alumina ($Al_2O_3$) and Yttria ($Y_2O_3$) were used for additives materials. These mixed powders were sintered at the temperature a of $1300^{\circ}C$, $1650^{\circ}C$, $1800^{\circ}C$ and $1900^{\circ}C$ under an applied pressure of 20MPa. And unidirection and two dimension woven structures of $SiC_f/SiC$ composites were prepared starting from Tyranno SA fiber. Densification of microstructure gives an effect to density. Specially, Densification Mechanism basically is important from the sintering which use the HP. In this study, the densification of NITE-SiC and $SiC_f/SiC$ composite mechanism by a press displacement appears investigated. The mechanism on the densification of each sintering temperature was investigated. The each step is shows a with each other different mechanism quality.

  • PDF

Sintering Behavior of the Net-shaped Fe-8wt%Ni Nanoalloy Powder and Related Mechanical Property

  • Cha, Berm-Ha;Kang, Yun-Sung;Lee, Sung-Ho;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.501-502
    • /
    • 2006
  • The present investigation has been performed on full densification behavior and mechanical property of the powder injection molded Fe-8wt%Ni nanoalloy powder. The net shaping process of the nanopowder was conducted by powder injection molding (PIM) process. The key-process for fabricating fully densified net-shaped nanopowder by pressureless sintering is an optimal control of agglomerate size of nanopowder. Enhanced mechanical property of PIMed Fe-Ni nanopowder is explained by grain refinement and microstructural uniformity.

  • PDF

Effect of Additives on Densification and Grain Growth of Magnesia (마그네시아의 치밀화 및 입자성장에 미치는 첨가물의 영향)

  • Lee, Hae-Weon;Kim, Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.127-132
    • /
    • 1982
  • This experiment has been carried out for the purpose of investigating the effect of additives on densification and grain growth in magnesium oxide by a two-step process; hot pressing and heat treating. MgO powder has been obtained by calcining extra reagent grade MgCO3 at 90$0^{\circ}C$ for 30 minutes, and additives have been added to $MgCO_3$ in the form of soluble salts-Al$(NO_3)_3$$. $9H_2O$ and $Cr(NO_3)_3$.9H_2O$. The hot pressing has been carried out with changes of soaking time at 125$0^{\circ}C$ under the pressure of 250kg/$\textrm{cm}^2$, and the heat treating also at same temperature. The initial particle size of MgO measured by particle size analyzer was 0.86 microns. Densification rate obeyed the equation D=K lnt + C, and grain growth rate obeyed the equation G-G0=kt1/2. It was vaporization of some $Cr_2O_3$ and formation of solid solution that had an influence on desification of MgO containing $Cr_2O_3$. Activation energy for grain growth of pure MgO was 62.4 kcal/mole, therefore grain growth was supposed to be diffusioncontrolled process. But after heat treatmeat, excess additives were expected to slow down the grain growth by the formation of second phase or the solute atoms at grainboundary.

  • PDF

Deformation of the Rubber Mold by Using the Cohesive Zone Model Under Cold Isostatic Pressing (응집영역모델을 이용한 정수압 성형 해석시 고무몰드의 변형거동)

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.387-395
    • /
    • 2008
  • Stress distribution and interfacial debonding process at the interface between a rubber mold and a powder compact were analyzed during unloading under cold isostatic pressing. The Cap model proposed by Lee and Kim was used for densification behavior of powder based on the parameters involved in the yield function of general Cap model and volumetric strain evolution. Cohesive elements incorporating a bilinear cohesive zone model were also used to simulate interfacial debonding process. The Cap model and the cohesive zone model were implemented into a finite element program (ABAQUS). Densification behavior of powder was investigated under various interface conditions between a rubber mold and a powder compact during loading. The residual tensile stress at the interface was investigated for rubber molds with various elastic moduli under perfect bonding condition. The variations of the elastic energy density of a rubber mold and the maximum principal stress of a powder compact were calculated for several interfacial strengths at the interface during unloading.

High Temperature Densification Forming Process of Tool Steel Powder Compact (공구강 분말 성형체의 고온 치밀화 성형공정)

  • Choi, Hak-Hyeon;Jeon, Yun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.