• 제목/요약/키워드: Densification Process

검색결과 307건 처리시간 0.02초

급속 소결 공정에 의한 초미립 WC-10Co와 WC-10Fe 초경재료 제조와 기계적 성질 (Mechanical Properties and Consolidation of Ultra-Fine WC-10Co and WC-10Fe Hard Materials by Rapid Sintering Process)

  • 정인균;박정환;도정만;김기열;우기도;고인용;손인진
    • 대한금속재료학회지
    • /
    • 제46권4호
    • /
    • pp.223-226
    • /
    • 2008
  • The comparison of sintering behavior and mechanical properties of ultra-fine WC-10wt.%Co and WC-10wt.%Fe hard materials produced by high-frequency induction heated sintering (HFIHS) was accomplished using ultra fine powder of WC and binders(Co, Fe). The advantage of this process allows very quick densification to near theoretical density and prohibition of grain growth in nano-structured materials. Highly dense WC-10Co and WC-10Fe with a relative density of up to 99% could be obtained with simultaneous application of 60 MPa pressure and induced current within 1 minute without significant change in grain size. The hardness and fracture toughness of the dense WC-10Co and WC-10Fe composites produced by HFIHS were investigated.

가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성 (Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing)

  • 김진권;최재형;남산;류성수;김성원
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지 (Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing)

  • 최재호;변영민;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

유리성형용 카본금형의 표면조도에 미치는 고출력 스퍼터링 조건의 영향 (The Effect of High Power Sputtering Conditions on Surface Roughness of Carbon Mold for Glass Forming )

  • 주성후;양재웅
    • 한국응용과학기술학회지
    • /
    • 제41권1호
    • /
    • pp.46-57
    • /
    • 2024
  • In this study, the various process conditions for high-power DC Magnetron Sputtering (DCMS) on the surface roughness of carbon thin films were investigated. The optimal conditions for Si/C coating were 40min for deposition time, which does not deviate from normal plasma, to obtain the maximum deposition rate, and the conditions for the best surface roughness were -16volt bias voltage and 400watt DC power with 1.3x10-3torr chamber pressure. Under these optimal conditions, an excellent carbon thin film with a surface roughness of 1.62nm and a thickness of 724nm was obtained. As a result of XPS analysis, it was confirmed that the GLC structure (sp2 bonding) was more dominant than the DLC structure (sp3 bonding) in the thin film structure of the carbon composite layer formed by DC sputtering. Except in infrequent cases of relatively plasma instability, the lower bias voltage and applied power induces smaller surface roughness value due to the cooling effect and particle densification. For the optimal conditions for Graphite/C composite layer coating, a roughness of 36.3 nm and a thickness of 711 nm was obtained under the same conditions of the optimal process conditions for Si/C coating. This layer showed a immensely low roughness value compared to the roughness of bare graphite of 242 nm which verifies that carbon coating using DC sputtering is highly effective in modifying the surface of graphite molds for glass forming.

고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향 (Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density)

  • 조종훈;황혜인;김지홍;이영석;임지선;강석창
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.569-573
    • /
    • 2021
  • 본 연구에서는 코크스, 바인더 피치 및 함침 피치를 사용하여 고밀도 탄소 블록을 제조하고, 함침 공정 시 피치의 유동성이 탄소 블록의 고밀도화에 미치는 영향을 고찰하였다. 코크스와 바인더 피치의 고압 성형을 통해 그린블록을 제조하고 열처리 공정을 통하여 탄소 블록을 얻었다. 열처리 공정 시 바인더 피치의 휘발에 의해 생성된 기공을 제거하고자 함침 공정을 진행하였다. 함침 공정은 함침 피치를 용융하는 전처리 단계와 피치를 탄소 블록에 함침하는 고압 반응 단계로 나누어 진행하였다. 함침 피치의 용융은 140~200 ℃에서 진행하였으며, 열처리 온도가 증가할수록 함침 피치의 점도가 감소하였다. 함침 피치의 점도 감소는 유동성을 향상시켜 탄소 블록 내부 기공을 효율적으로 함침하여 탄소 블록의 기공률을 83% 감소시켰고 겉보기 밀도를 5% 상승시켰다.

SDAR을 이용한 아스팔트 혼합물의 적용성 평가 (Application Evaluation of Asphalt mixtures using SDAR (Solvent DeAsphaltene Residue))

  • 양성린;임정혁;황성도;백철민
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.53-61
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the SDAR (solvent deasphaltene residue), which is obtained from the solvent deasphalting (SDA) process, as a pavement material. METHODS : The physical properties of the SDAR were evaluated based on its chemical composition, and asphalt mixtures with the SDAR were fabricated and used for the evaluation of mechanical properties. Firstly, the chemical composition of SARA (saturate, aromatic, resin and asphaltene) was analyzed using the TLC-FID (thin-layer chromatography-flame ionization detector). Moreover, the basic material properties of the asphalt binder with the SDAR were evaluated by the penetration test, softening point test, ductility test, and PG (performance grade) grade test. The rheological properties of the asphalt binder with the SDAR were evaluated by the dynamic shear modulus ($G^*$) obtained using the time-temperature superposition (TTS) principle. Secondly, the mechanical properties of the asphalt mixtures with the SDAR were evaluated. The compactibility was evaluated using the gyratory compacter. Moreover, the tensile strength ratio (TSR) was used for evaluating the moisture susceptibility of the asphalt mixtures (i.e., susceptibility to pothole damage). The dynamic modulus $E^*$, which is a fundamental property of the asphalt mixture, obtained at different temperatures and loading cycles, was used to evaluate the mechanical properties of the asphalt mixtures. RESULTS AND CONCLUSION : The SDAR shows stiffer and more brittle behavior than the conventional asphalt binder. As the application of the SDAR directly in the field may cause early failures, such as cracks on pavements, it should be applied with modifiers that can favorably modify the brittleness property of the SDAR. Therefore, if appropriate additives are applied on the SDAR, it can be used as a pavement material because of its low cost and strong resistance to rutting.

Mechanical Properties of Bulk Amorphous Ti50Cu20Ni20Al10 Fabricated by High-energy Ball Milling and Spark-plasma Sintering

  • Nguyen, H.V.;Kim, J.C.;Kim, J.S.;Kwon, Y.J.;Kwon, Y.S.
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.358-362
    • /
    • 2009
  • Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region ($\Delta$T$_x$ = T$_x$ T$_g$, T$_g$ and T$_x$: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of Ti$_{50}$Cu$_{20}$Ni$_{20}$Al$_{10}$ were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.

SiC 재료의 미세조직 및 열충격 특성 (Microstructure and Thermal Shock Properties of SiC Materials)

  • 이상필;조경서;이현욱;손인수;이진경
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.28-33
    • /
    • 2011
  • The thermal shock properties of SiC materials were investigated for high temperature applications. In particular, the effect of thermal shock temperature on the flexural strength of SiC materials was evaluated, in conjunction with a detailed analysis of their microstructures. The efficiency of a nondestructive technique using ultrasonic waves was also examined for the characterization of SiC materials suffering from a cyclic thermal shock history. SiC materials were fabricated by a liquid phase sintering process (LPS) associated with hot pressing, using a commercial submicron SiC powder. In the materials, a complex mixture of $Al_2O_3$ and $Y_2O_3$ powders was used as a sintering additive for the densification of the microstructure. Both the microstructure and mechanical properties of the sintered SiC materials were investigated using SEM, XRD, and a three point bending test. The SiC materials had a high density of about 3.12 Mg/m3 and an excellent flexural strength of about 700 MPa, accompanying the creation of a secondary phase in the microstructure. The SiC materials exhibited a rapid propagation of cracks with an increase in the thermal shock temperature. The flexural strength of the SiC materials was greatly decreased at thermal shock temperatures higher than $700^{\circ}C$, due to the creation of microcracks and their propagation. In addition, the SiC materials had a clear tendency for a variation in the attenuation coefficient in ultrasonic waves with an increase in thermal shock cycles.

중성자 회절법에 의한 Ni-W 합금 소결체의 격자상수 측정 (Estimation of a Lattice Parameter of Sintered Ni-W Alloy Rods by a Neutron Diffraction Method)

  • 김찬중;김민우;박순동;전병혁;장석원;성백석
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.239-243
    • /
    • 2008
  • Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at $1000^{\circ}C-1150^{\circ}C$ at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was $3.5238{\AA}$ which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by $0.004{\AA}$ for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • 시스템엔지니어링학술지
    • /
    • 제13권1호
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.