• 제목/요약/키워드: Dense Neural Network

검색결과 81건 처리시간 0.016초

메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석 (Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin)

  • 김영훈;레수안히엔;정성호;연민호;이기하
    • 한국수자원학회논문집
    • /
    • 제56권2호
    • /
    • pp.75-89
    • /
    • 2023
  • 강우-유출 해석은 하천 홍수예경보, 댐 유입량 산정 및 방류량 결정 등 수자원 관리 및 계획수립에 있어 중요한 과정이며, 밀도높은 강우관측망으로부터 수집된 강우 자료는 정확한 강우-유출 해석을 위한 가장 중요한 기초 자료로 활용된다. 본 연구 대상 지역인 메콩강 유역은 국가공유하천으로 강수 자료수집이 어렵고, 구축된 자료의 양적, 질적 품질이 국가별로 상이하여 수문해석 결과의 불확실성을 높일 우려가 있다. 최근 원격탐사 기술의 발달로 격자형 글로벌 강수자료의 획득이 용이해졌으며, 이를 활용한 미계측 유역 또는 대유역에서의 다양한 수문해석 연구들이 수행된 바 있다. 본 연구에서는 미계측 대유역 수문해석에 있어 격자형 강수자료의 적용성을 평가하기 위하여 3개의 위성 강수자료(TRMM, GSMaP, PERSIANN-CDR)와 2개의 지점 격자형 강수자료(APHRODITE, GPCC)를 수집하고, APHRODITE를 관측값으로 합성곱 신경망 모형인 ConvAE 알고리즘을 이용하여 위성 강수자료의 시·공간적 편의보정을 수행하였다. 또한, 메콩강 본류의 주요지점인 Luang Prabang, Pakse, Stung Treng, Kratie 4개 수위 관측소를 선정하여 SWAT 모형의 매개변수를 보정(2004~2011)하고 지점 격자형 강수자료 및 위성 강수자료의 보정전·후의 유출모의(2012~2013) 결과를 비교·분석하였다. 그 결과 원시위성 강수자료 및 GPCC는 APHPRODITE에 비해 정량적으로 과소 또는 과대추정되거나 공간적으로 매우 상이한 패턴을 나타낸 반면, GSMaP과 ConvAE를 이용하여 보정된 위성 강수자료의 경우, APHPRODITE에 대한 시·공간적 상관성이 개선된 것으로 분석되었다. 또한 유출모의의 경우, 모든 지점에 대해서 ConvAE로 보정된 위성 강수자료를 이용한 유출모의 결과가 원시 위성강수자료를 이용한 유출결과 보다 정확도가 향상된 것으로 분석되었다. 따라서 본 연구에서 제시하는 격자형 위성 강수자료 보정기법과 연계한 강우-유출 해석은 향후 다양한 위성 강수자료를 활용한 미계측 대유역 수문해석에서 활용이 가능할 것으로 판단된다.