• Title/Summary/Keyword: Dense Mapping

Search Result 60, Processing Time 0.032 seconds

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.

FULL SPECTRUM PRESERVING LINEAR MAPPING BETWEEN STLICTLY DENSE BANACH ALGEBRAS

  • Lee, Young-Whan;Park, Kyoo-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.303-307
    • /
    • 1999
  • Let A and B be two strictly dense Banach Algebras on X and Y respectively where X and Y are Banach space. We give some conditions under which full spectrum preserving linear mappings from A into B Jordan morphisms and X is homomorphic to Y.

Current Status of Quantitative Trait Locus Mapping in Livestock Species - Review -

  • Kim, Jong-Joo;Park, Young I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.4
    • /
    • pp.587-596
    • /
    • 2001
  • In the last decade, rapid developments in molecular biotechnology and of genomic tools have enabled the creation of dense linkage maps across whole genomes of human, plant and animals. Successful development and implementation of interval mapping methodologies have allowed detection of the quantitative trait loci (QTL) responsible for economically important traits in experimental and commercial livestock populations. The candidate gene approach can be used in any general population with the availability of a large resource of candidate genes from the human or rodent genomes using comparative maps, and the validated candidate genes can be directly applied to commercial breeds. For the QTL detected from primary genome scans, two incipient fine mapping approaches are applied by generating new recombinants over several generations or utilizing historical recombinants with identity-by-descent (IBD) and linkage disequilibrium (LD) mapping. The high resolution definition of QTL position from fine mapping will allow the more efficient implementation of breeding programs such as marker-assisted selection (MAS) or marker-assisted introgression (MAI), and will provide a route toward cloning the QTL.

Filaments and Dense Cores in Perseus Molecular Cloud

  • Chung, Eun Jung;Lee, Chang Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.38.2-38.2
    • /
    • 2016
  • How dense cores and filaments in molecular clouds form is one of key questions in star formation. To challenge this issue we started to make a systematic mapping survey of nearby molecular clouds in various environments with TRAO 14m telescope equipped with 16 beam array, in high ($N_2H^+$, $HCO^+$ 1-0) and low ($C^{18}O$, $^{13}CO$ 1-0) density tracers (TRAO Multi-beam Legacy Survey of Nearby Filamentary Molecular Clouds, PI: C. W. Lee). We pursue to dynamically and chemically understand how filaments, dense cores, and stars form under different environments. We have performed On-The-Fly (OTF) mapping observations toward L1251, southern part of Perseus molecular cloud, and Serpens main molecular cloud from January to May, 2016. In total, ~3.5 square degree area map of $^{13}CO$ and $C^{18}O$ was simultaneously obtained with S/N of >10 in a velocity resolution of ~0.2 km/s. Dense core regions of ~1.7 square degree area where $C^{18}O$ 1-0 line is strongly detected were also mapped in $N_2H^+$ 1-0 and $HCO^+$ 1-0. The L1251 and Perseus MC are known to be low- to intermediate-mass star-forming clouds, while the Serpens MC is an active low-mass star-forming cloud. The observed molecular filaments will help to understand how the filaments, cores and eventually stars form in a low- and/or intermediate-mass star-forming environment. In this talk, I'll give a brief report on the observation and show preliminary results of Perseus MC.

  • PDF

The relationship of dense molecular gas and HI/H2 gas in a MALATANG galaxy, NGC 6946

  • Poojon, Panomporn;Chung, Aeree;Lee, Bumhyun;Oh, Se-Heon;Tan, Qing-Hua;Gao, Yu;Sengupta, Chandreyee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.76.3-76.3
    • /
    • 2019
  • We present the results from our comparisons of HCN and HCO+ (J=4-3) with HI and $H_2$ gas in NGC 6946, a sample from a mapping study of the dense molecular gas in the strongest star-forming galaxies (MALATANG). The MALATANG is one of the JCMT legacy surveys on the nearest 23 IR-brightest galaxies beyond the Local Group, which aims to study the relations of dense molecular gas with more general cool gas such as atomic and molecular hydrogen gas, and star formation properties in active galaxies. In this work, we particularly focus on the comparisons between the JCMT HCN/HCO+ (J=4-3) data and the THINGS HI/the NRO CO (J=1-0) data. We probe the dense molecular gas mass as a function of HI and $H_2$ mass in different locations in the central ${\sim}1.5kpc^2$ region. We discuss how the excess/deficit of $HI/H_2$ or total cool gas ($HI+H_2$) mass controls the presence and/or the fraction of dense molecular gas.

  • PDF

Filament, the Universal Nersery of Stars: Progress Report on TRAO Survery of Nearby Filamentary Filamentary Molecular Clouds

  • Kim, ShinYoung;Chung, Eun Jung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Tafalla, Mario;Kim, Gwanjeong;Kim, Miryang;Soam, Archana;Gophinathan, Maheswar;Liu, Tie;Kim, Kyounghee;Kwon, Woojin;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2017
  • To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until the 2017A season, the real OTF observation time is ~760 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the six regions of molecular clouds (L1251 of Cepheus, Perseus West, Polaris South, BISTRO region of Serpens, California, and Orion B). The cube data for $^3CO$ and $C^{18}O$ lines were obtained for a total of 6 targets, 57 tiles, 676 maps, and $7.1deg^2$. And $N_2H^+$ and $HCO^+$ data were added for $2.2deg^2$ of dense regions. All OTF data were regridded to a cell size of 44 by 44 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about (0.1-0.2) K and $N_2H^+$ and $HCO^+$ data show about (0.07-0.2) K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. To identify filaments, we are using and testing programs (DisPerSE, Dendrogram, FIVE) and visual inspection for 3D image of cube data. A basic analysis of the physical and chemical properties of each filament is underway.

  • PDF

Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study

  • Kim, JongJoo;Farnir, Frederic
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1702-1705
    • /
    • 2006
  • A simulation study was conducted to evaluate a fine-mapping method exploiting population-wide linkage disequilibrium. Data were simulated according to the pedigree structure based on a large paternal half-sib family population with a total of 1,034 or 2,068 progeny. Twenty autosomes of 100 cM were generated with 5 cM or 1 cM marker intervals for all founder individuals in the pedigree, and marker alleles and a number of quantitative trait loci (QTL) explaining a total of 70% phenotypic variance were generated and randomly assigned across the whole chromosomes, assuming linkage equilibrium between the markers. The founder chromosomes were then descended through the pedigree to the current offspring generation, including recombinants that were generated by recombination between adjacent markers. Power to detect QTL was high for the QTL with at least moderate size, which was more pronounced with larger sample size and denser marker map. However, sample size contributed much more significantly to power to detect QTL than map density to the precise estimate of QTL position. No QTL was detected on the test chromosomes in which QTL was not assigned, which did not allow detection of false positive QTL. For the multiple QTL that were closely located, the estimates of the QTL positions were biased, except when the QTL were located on the right marker positions. Our fine mapping simulation results indicate that construction of dense maps and large sample size is needed to increase power to detect QTL and mapping precision for QTL position.

Chemical Differentiation of $C^{34}S$ and $N_2H^+$ in Dense Starless Cores

  • Kim, Shinyoung;Lee, Chang Won;Sohn, Jungjoo;Kim, Gwanjeong;Kim, Mi-Ryang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.75.2-75.2
    • /
    • 2014
  • CS molecule as an important tracer for studying inward motions in dense cores is known to be adsorbed onto dusts in cold (T~10K) dense cores, resulting in its significant depletion in the central region of the cores which may hamper a proper study of kinematics stage of star formation. In this study we choose five 'evolved' dense starless cores, L1544, L1552, L1689B, L694-2 and L1197, to investigate how depletion of CS molecule is significant and how the molecule differentiates depending on the evolutional status of the dense cores, by using a rare isotopomer C34S. We performed mapping observations in C34S (J=2-1) and N2H+ (J=1-0) with Nobeyama 45 m telescope, and compared $850{\mu}m$ continuum data as a reference of the density distribution of the dense cores. Our data confirm the claim that CS molecule generally depletes out in the central region in dense starless cores, while N2H+ keeps abundant as they get evolved. All of integrated intensity maps show 'semi-ring-like' depletion holes in CS, and all of abundance radial profiles show decrease toward center. The CS depletion and molecular chemical differentiation seems to depend on the evolutional status in dense cores. The evolved cores shows low abundance at both central and outer regions, implying that in the case of highly evolved cores CS freeze-out occurs over the most area of the cores.

  • PDF

TRAO Multi-beam Legacy Survey of Nearby Filamentary Molecular Clouds : Progress Report

  • Kim, ShinYoung;Chung, Eun Jung;Lee, Chang Won;Myers, Philip C.;Caselli, Paola;Tafalla, Mario;Kim, Gwanjeong;Kim, Miryang;Soam, Archana;Gophinathan, Maheswar;Liu, Tie;Kim, Kyounghee;Kwon, Woojin;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2017
  • To dynamically and chemically understand how filaments, dense cores, and stars form under different environments, we are conducting a systematic mapping survey of nearby molecular clouds using the TRAO 14 m telescope with high ($N_2H^+$ 1-0, $HCO^+$ 1-0, SO 32-21, and $NH_2D$ v=1-0) and low ($^{13}CO$ 1-0, $C^{18}O$ 1-0) density tracers. The goals of this survey are to obtain the velocity distribution of low dense filaments and their dense cores for the study of their origin of the formation, to understand whether the dense cores form from any radial accretion or inward motions toward dense cores from their surrounding filaments, and to study the chemical differentiation of the filaments and the dense cores. Until Feb. 2017, the real OTF observation time is 460 hours. We have almost completed mapping observation with four molecular lines ($^{13}CO$ 1-0, $C^{18}O$ 1-0, $N_2H^+$ 1-0, and $HCO^+$ 1-0) on the five regions of molecular clouds (L1251 of Cepheus, Perseus west, Polaris south, BISTRO region of Serpense, California, and Orion B). The maps of a total area of $7.38deg^2$ for both $^{13}CO$ and $C^{18}O$ lines and $2.19deg^2$ for both $N_2H^+$ and $HCO^+$ lines were obtained. All OTF data were regridded to a cell size of 22 by 22 arcseconds. The $^{13}CO$ and $C^{18}O$ data show the RMS noise level of about 0.22 K and $N_2H^+$ and $HCO^+$ data show about 0.14 K at the velocity resolution of 0.06 km/s. Additional observations will be made on some regions that have not reached the noise level for analysis. We are refining the process for a massive amount of data and the data reduction and analysis are underway. This presentation introduces the overall progress from observations to data processing and the initial analysis results to date.

  • PDF