• 제목/요약/키워드: Denoise

검색결과 32건 처리시간 0.025초

컴퓨터 비젼을 이용한 컨테이너 자세 측정 (The Container Pose Measurement Using Computer Vision)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.702-707
    • /
    • 2004
  • 본 논문은 CCD 카메라와 거리 센서를 사용하여 컨테이너의 자세 측정에 관하여 연구하였다. 특히 특징점을 추출하고 영상의 잡음을 줄이는 방법에 대하여 중점적으로 기술하였다. 가우시안 및 랜덤 노이즈를 제거하기 위하여 Euler-Lagrange 방정식을 소개하였으며 PDE(Partial Differential Equation)를 기초로 한 Euler-Lagrange 방정식을 풀기 위하여 ADI(Alternating Direction Implicit)방법을 적용하였다. 그리고 스프레더와 컨테이너의 특징점을 추출하기 위해서 기존의 황금 분할법과 이분 분할법을 이용한 방법은 지역적 최대 및 최소 값의 경우 정확한 해를 구할 수 없어서 k차 곡률 알고리즘을 이용하였다. 제안된 알고리즘은 영상의 전처리과정에서 잡음제거에 효과적이며 카메라와 거리센서를 이용한 제안 시스템은 기존시스템의 구조적 변경 없이 사용가능하기 때문에 비용이 저렴한 장점이 있다.

Denoising solar SDO/HMI magnetograms using Deep Learning

  • Park, Eunsu;Moon, Yong-Jae;Lim, Daye;Lee, Harim
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.43.1-43.1
    • /
    • 2019
  • In this study, we apply a deep learning model to denoising solar magnetograms. For this, we design a model based on conditional generative adversarial network, which is one of the deep learning algorithms, for the image-to-image translation from a single magnetogram to a denoised magnetogram. For the single magnetogram, we use SDO/HMI line-of-sight magnetograms at the center of solar disk. For the denoised magnetogram, we make 21-frame-stacked magnetograms at the center of solar disk considering solar rotation. We train a model using 7004 paris of the single and denoised magnetograms from 2013 January to 2013 October and test the model using 1432 pairs from 2013 November to 2013 December. Our results from this study are as follows. First, our model successfully denoise SDO/HMI magnetograms and the denoised magnetograms from our model are similar to the stacked magnetograms. Second, the average pixel-to-pixel correlation coefficient value between denoised magnetograms from our model and stacked magnetogrmas is larger than 0.93. Third, the average noise level of denoised magnetograms from our model is greatly reduced from 10.29 G to 3.89 G, and it is consistent with or smaller than that of stacked magnetograms 4.11 G. Our results can be applied to many scientific field in which the integration of many frames are used to improve the signal-to-noise ratio.

  • PDF

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

A Novel RFID Dynamic Testing Method Based on Optical Measurement

  • Zhenlu Liu;Xiaolei Yu;Lin Li;Weichun Zhang;Xiao Zhuang;Zhimin Zhao
    • Current Optics and Photonics
    • /
    • 제8권2호
    • /
    • pp.127-137
    • /
    • 2024
  • The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.

Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images

  • Feng Wang;Trond R. Henninen;Debora Keller;Rolf Erni
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.23.1-23.9
    • /
    • 2020
  • We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain 𝓢 to a target domain 𝓒, where 𝓢 is for our noisy experimental dataset, and 𝓒 is for the desired clear atomic images. Noise2Atom uses two external networks to apply additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation, and no paired training images. The only assumption is that the inputs are acquired with identical experimental configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets.

웨이브렛 변환 영역에서 적응문턱값을 이용한 적외선영상의 잡음제거 (Denoising of Infrared Images by an Adaptive Threshold Method in the Wavelet Transformed Domain)

  • 조창호;이상효;이종용;조도현;이상철
    • 전자공학회논문지 IE
    • /
    • 제43권4호
    • /
    • pp.65-75
    • /
    • 2006
  • 본 연구에서는, 열상장비(thermal imaging equipment)로 촬영한 적외선 영상의 화질을 저해하는 주된 요소인 임펄스 잡음(impulse noise)과 가우시안 잡음(Gaussian noise)을 제거하는 웨이브렛 변환 기반 방법을 논의한다. 효과적인 잡음제거를 위하여 잡음으로 손상된 적외선 영상에 대하여 상세 부분대역 웨이브렛 계수에 대한 미분과 중앙절대편차(median absolute deviation)를 이용한 문턱값 설정방법을 제안하였다. 특히, 임펄스성 잡음제거를 위해서 웨이브렛 계수를 미분하여 임펄스 잡음의 위치를 나타내는 이진 마스크를 생성하는 방법을 채택하였다. 이와 같은 방법에 의해, 모서리와 잡음을 구분하는 적응 문턱 값 설정을 보다 효율적으로 얻을 수 있었고, 기존 웨이브렛 수축법과 비교를 통하여 제안한 잡음제거 방법의 타당성을 확인하였다.

멀티웨이블릿 변환영역에서 계수정규화를 이용한 Soft-Threshold 기법의 영상신호 잡음제거 (Image Signal Denoising by the Soft-Threshold Technique Using Coefficient Normalization in Multiwavelet Transform Domain)

  • 김재환;우창용;박남천
    • 융합신호처리학회논문지
    • /
    • 제8권4호
    • /
    • pp.255-265
    • /
    • 2007
  • 웨이블릿 축소 기법으로 영상신호의 잡음을 제거할 때, 웨이블릿 계수들이 상관관계를 갖는 경우 잡음제거 효과가 저하된다. 멀티웨이블릿 변환된 계수 들은 사전 필터의 영향으로 상관관계를 갖게 된다. 이러한 문제점을 해결하기위해 V Sterela에 의해 Universal 경계 값 적용을 위한 사전 필터를 새로 설계하거나 가중 값을 적용하는 기법이 제시되었다. 본 논문에서는 멀티웨이블릿 변환 영역에서 웨이블릿 축소 기법의 잡음제거 효과를 향상시키기 위해, 대역의 계수를 추정된 잡음편차로 나누는 계수 정규화기법을 Universal, SURE 및 GCV 경계 값에 적용하여 잡음을 제거하는 시도를 하였다. 각 경계 값들에 대한 PSNR을 비교하여 이 기법의 실용성을 확인하였다.

  • PDF

웨이브렛 변환을 응용한 합성자료 및 기조력 자료의 잡음 제거 (Denoise of Synthetic and Earth Tidal Effect using Wavelet Transform)

  • 임형래;진홍성;권병두
    • 지구물리
    • /
    • 제2권2호
    • /
    • pp.143-152
    • /
    • 1999
  • 지구 물리 자료의 질을 높이기 위한 전처리 과정에서 웨이브렛 변환을 도입하여 잡음을 제거하는 기법에 관한 연구를 수행하였다. 이 기법의 효율성을 평가하기 위하여 합성자료를 이용하여 저역통과 필터링과 웨이브렛 변환을 통한 잡음 제거 결과를 비교하였다. 저역통과 필터링한 삼각함수 신호는 샘플링 구간에서 신호 양단의 차이에 기인하는 깁스 현상에 의해 오차가 나타났고, 범프 신호는 고주파 성분이 소멸되어 피크가 나타나는 부근에서 큰 오차가 발생하였다. 웨이브렛 변환을 이용한 잡음 제거에서는 시간 영역에서의 국부성과 웨이브렛 변환 영역에서의 신호와 무작위 잡음이 구분 가능하다는 특성을 이용함으로써 잡음을 효과적으로 제거할 수 있었다. 실측된 기조력 자료는 계기 보정 후 Soft threshold를 통해 잡음이 효과적으로 제거됨을 보였고, 이를 이론 기조력 값과 비교하여 G-인자를 계산하였다.

  • PDF

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim;Kwang Soo Youm;Kwang Yeom Kim;Yong-Hoon Byun;Young K. Ju;Tae Sup Yun
    • Computers and Concrete
    • /
    • 제31권5호
    • /
    • pp.433-442
    • /
    • 2023
  • This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.