• Title/Summary/Keyword: Denitrifying Phosphorus Accumulating Organisms (DPAOs)

Search Result 2, Processing Time 0.015 seconds

Phosphorus Removal by DPAOs (Denitrifying Phosphorus Accumulating Organisms) in Aerobic Condition (호기 조건에서 DPAOs (Denitrifying Phosphorus Accumulation Organisms)에 의한 인 제거)

  • Jeong, No-Sung;Park, Young-Seek;Kim, Dong-Seog
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • This study was carried out to get phosphorus uptake rate in aerobic condition with nitrate and nitrite. Nitrate and nitrite inhibited phosphorus accumulating organisms' (PAOs') luxury uptake in aerobic condition. Nitrite awfully decreased the phosphorus uptake rate in aerobic condition. At the influent of 10 mg ${NO_3}^-$-NL, the phosphorus uptake was decreased to 52% comparing that at no influent of nitrate. And at the influent of 10 mg ${NO_2}^-$-NL, the phosphorus uptake was decreased to 28% comparing that at no influent of nitrite. At the influent of 20 mg ${NO_3}^-$-NL, nitrite and nitrate were co-existed and the phosphorus uptake rate was decreased to 16% comparing that at no influent of nitrite and nitrate. Also, the denitrification was occurred by denitrifying glycogen accumulating organisms (DGAOs)/denitrifying phosphorus accumulating organisms (OPAOs) in spite of aerobic condition, and the phosphorus uptake rate was increased by the decrease of influent nitrate concentration at the aerobic condition. The inflection point in the phosphorus uptake rate was shown at the nitrite concentration of 1.5~2 mg/L.

Biological Nutrient Removal by Enhancing Anoxic Phosphate Uptake (무산소 조건에서의 인섭취를 이용한 생물학적 영양염류 제거)

  • Lee, Dae Sung;Jeon, Che Ok;Park, Jong Moon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.861-867
    • /
    • 2000
  • The feasibility of simultaneous phosphorus and nitrogen removal by enhancing anoxic phosphorus uptake was investigated in a sequencing batch reactor (SBR). By introducing an anoxic phase into an anaerobic-aerobic SBR (AO SBR), significant amounts of denitrifying phosphorus accumulating organisms (DPAOs) which can utilize nitrate as electron acceptor could be accumulated in the reactor (anaerobic-aerobic- anoxic-aerobic SBR, $(AO)_2$ SBR). A direct comparison of phosphorus uptake rate under anaerobic and aerobic conditions showed that the fraction of DPAOs in P-removing sludge were increased from 10% in the AO SBR to 64% in $(AO)_2$ SBR. The $(AO)_2$ SBR showed stable phosphorus and nitrogen removal efficiency: average removal efficiencies of TOC, total nitrogen, and phosphorus were 92%, 88%, and 100%. respectively. Results of the $(AO)_2$ SBR operation and batch tests showed that nitrite (up to 10 mg-N/L) was not detrimental to anoxic phosphorus uptake and could serve as good electron acceptor like nitrate.

  • PDF