• Title/Summary/Keyword: Denial list

Search Result 3, Processing Time 0.028 seconds

Development of Nuclear Industry Information Gathering and Analysis System and Denied Persons Information Gathering System for Preventing Illegitimate Export of Trigger List Items in Korea

  • Sangjun Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.315-327
    • /
    • 2023
  • In South Korea, the exporters of items related to nuclear power generation are diversified. Consequently, there is a risk of illegitimate export by companies failing to recognize the export control system because the awareness about this system for the strategic items among the subcontractors of nuclear power facilities is limited. To prevent illegitimate export of the strategic items, it is necessary to conduct outreach activities regarding the export control system for the related companies. Additionally, the exporters and export license examiners should consider whether an export target is on the Denial List, who may divert the strategic items to weapons of mass destruction. Therefore, the Korea Institute of Nuclear Nonproliferation and Control developed two systems for controlling illegitimate export of the Trigger List items. The first system, Nuclear Industry Information Collection and Analysis System, can gather information about the key nuclear industries in Korea and analyze the dealing of strategic items. The second system, Denied Persons Information Gathering System, can regularly gather information about the denied persons and provide the updated data to the exporters and regulatory examiners. These two systems can be used for outreach activities and export license examination to prevent illegitimate export of the strategic items.

Detection System Model of Zombie PC using Live Forensics Techniques (활성 포렌식 기술을 이용한 좀비 PC 탐지시스템 모델)

  • Hong, Jun-Suk;Park, Neo;Park, Won-Hyung
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.3
    • /
    • pp.117-128
    • /
    • 2012
  • There was a large scale of DDoS(Distributed Denial of Service) attacks mostly targeted at Korean government web sites and cooperations's on March 4, 2010(3.4 DDoS attack) after 7.7 DDoS on July 7, 2009. In these days, anyone can create zombie PCs to attack someone's website with malware development toolkits and farther more improve their knowledge of hacking skills as well as toolkits because it has become easier to obtain these toolkits on line, For that trend, it has been difficult for computer security specialists to counteract DDoS attacks. In this paper, we will introduce an essential control list to prevent malware infection with live forensics techniques after analysis of monitoring network systems and PCs. Hopefully our suggestion of how to coordinate a security monitoring system in this paper will give a good guideline for cooperations who try to build their new systems or to secure their existing systems.

A Blockchain-enabled Multi-domain DDoS Collaborative Defense Mechanism

  • Huifen Feng;Ying Liu;Xincheng Yan;Na Zhou;Zhihong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.916-937
    • /
    • 2023
  • Most of the existing Distributed Denial-of-Service mitigation schemes in Software-Defined Networking are only implemented in the network domain managed by a single controller. In fact, the zombies for attackers to launch large-scale DDoS attacks are actually not in the same network domain. Therefore, abnormal traffic of DDoS attack will affect multiple paths and network domains. A single defense method is difficult to deal with large-scale DDoS attacks. The cooperative defense of multiple domains becomes an important means to effectively solve cross-domain DDoS attacks. We propose an efficient multi-domain DDoS cooperative defense mechanism by integrating blockchain and SDN architecture. It includes attack traceability, inter-domain information sharing and attack mitigation. In order to reduce the length of the marking path and shorten the traceability time, we propose an AS-level packet traceability method called ASPM. We propose an information sharing method across multiple domains based on blockchain and smart contract. It effectively solves the impact of DDoS illegal traffic on multiple domains. According to the traceability results, we designed a DDoS attack mitigation method by replacing the ACL list with the IP address black/gray list. The experimental results show that our ASPM traceability method requires less data packets, high traceability precision and low overhead. And blockchain-based inter-domain sharing scheme has low cost, high scalability and high security. Attack mitigation measures can prevent illegal data flow in a timely and efficient manner.