• Title/Summary/Keyword: Dendritic Solidification

Search Result 60, Processing Time 0.021 seconds

Effect of the Casting Conditions on the Globulization of Primary Al of $AlSi_7Mg$ Alloy (($AlSi_7Mg$알루미늄 합금의 초정 구형화에 대한 주조조건의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Lee, Jae-Chul
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2003
  • Semisolid forming requires alloys with non-dendritic microstructure of the thixotropy. Recently, low pouring temperture method without stirring, i.e. liquidus casting has been found out new fabrication method of the semisolid metals. Effects of melt superheat and mold conditions on the globulization of primary Al of $AlSi_7Mg$ alloy were investigated in gravity casting process without stirring. The microstructures of primary Al as function of melt superheat and mold temperature show globular, rosette and dendritic shapes. The conditions for globular microstructure of primary Al were low melt superheat < 35 K and low mold temperature < 500 K. The thermal conditions for globular microstructure of primary Al were undercooled melt at early solidification stages and slow cooling < 0.6 K/s. It was found that the initial microstructure was maintained throughout the solidification and the globules of primary Al can be obtained by high nucleation of fine and spherical nuclei due to enhanced undercooling of melt.

Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy (TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구)

  • Park, Jong-Moon;Jang, Ho-Seung;Kim, Seong-Woong;Kim, Seung-Eon;Shon, Je-Ha;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.227-233
    • /
    • 2016
  • Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

Solidification and Segregation Behaviors with Solidification Rate in Co base superalloy, FSX-414 (일방향 응고된 Co기 초내열합금 FSX-414의 응고속도에 따른 응고조직 및 편석 거동)

  • Lee, Hyun-Jung;Lee, Je-Hyun;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.440-446
    • /
    • 2009
  • Co base superalloys have been widely used for the parts of gas turbine due to their excellent strength, thermal fatigue, oxidation resistance and weldability at high temperature. In this study, directional solidifications were carried out at various solidification rates, including $0.5{\sim}300{\mu}m/s$ in the Co base superalloy FSX-414. The cellular interface were formed at a low solidification rate, $1{\mu}m/s$, and the dendritic interface was found at higher solidification rates, $5{\sim}300{\mu}m/s$. As the spacing of dendrite structure decreased, the size and spacing of eutectics decreased. Dendrite arm spacing decreased with increasing solidification rates and temperature gradient. It was interesting to find the $M_{23}C_{6}$ eutectic microstructure formed between $\gamma$ dendrites. Composition analysis showed that Cr and W were segregated severely between the dendrites, which resulted in the formation of Cr-rich $M_{23}C_{6}$ and W-rich MC carbides.

The Effect of Solidification Rates and Thermal Gradients on Directionally Solidified Microstructure in the Ni-base Superalloy GTD111M (GTD111M 초내열합금에서 응고속도 및 온도구배가 일방향응고 조직 에 미치는 영향)

  • Ye, Dae-Hee;Kim, Cyun-Choul;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.897-903
    • /
    • 2002
  • Morphological evolution and growth mechanism at the solid/liquid interface during solidification were investigated in the Ni-base superalloy GTD111M by directional soldification and quenching(DSQ) technique. The experiments were conducted by changing solidification rate(V) and thermal gradient(G) which are major solidification process variables. High thermal gradient condition could be obtained by increasing the furnace temperature and closely attaching the heating and cooling zones in the Bridgeman type furnace. The dendritic/equiaxed transition was found in the G/V value lower than $0.05$\times$10{^3}^{\circ}C$s/$\textrm{mm}^2$, and the planar interface of the MC-${\gamma}$ eutectic was found under $17 $\times$ 10{^3}^{\circ}C$ s/$\textrm{mm}^2$. It was confirmed that the dendrite spacing depended on the cooling rate(GV), and the primary spacing was affected by the thermal gradient more than solidification rate. The dendrite lengths were decreased as increasing the thermal graditne, and the dendrite tip temperature was close to the liquidus temperature at $50 \mu\textrm{m}$/s.

Quasicrystals And Related Approximant Phases in Mg-Zn-Y (Mg-Zn-Y 합금에서 준결정 및 준결정 유사상)

  • Park, Eun-Soo;Ok, Jae-Bum;Kim, Won-Tae;Kim, Do-Hyang
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • As-cast microstructure of Mg-rich $Mg_{68}Zn_{28}Y_4$ has been investigated by a detailed transmission electron microscopy. The as-cast $Mg_{68}Zn_{28}Y_4$ alloy consisted of three different types of phases: $10{\sim}20{\mu}m$ size primary solidification phase, dendritic phase grown from the primary phase and a eutectic structure formed at the later stage of solidification. The primary solidification phase has an icosahedral structure with a large degree of phason strain. 1/1 rhombohedral approximant phase with lattice parameters: $a=27.2{\AA}\;and\;{\alpha}=63.43^{\circ}$ is first observed in Mg-Zn-Y system. The rhombohedral structure can be obtained by introducing phason strain in the six dimensional face centered hyper-cubic lattice. The decagonal phase nucleates with orientation relationship with the icosahedral phase, and $Mg_4Zn_7$ nucleates with orientation relationship with the decagonal phase, indicating a close structural similarity between the three phases. Gradual depletion of Y during solidification plays an important role in heterogeneous nucleation of decagonal and $Mg_4Zn_7$ phases from icosahedral and decagonal phases respectively.

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

Study on microstructure of sensitized Alloy 600 rapidly solidified by a $CO_2$ laser beam ($CO_2$ 레이저빔을 이용한 예민화된 Alloy 600의 급속응고 미세구조 연구)

  • 임연수;서정훈;국일현;김정수
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 1998
  • A Study on microstructural changes of sensitized Alloy 600 which was rapidly solidified by a $CO_2$ laser beam was conducted using microscopic equipments such as SEM and TEM. Dissolution of Cr-rich carbides and resultant Cr recovery on the grain boundaries occurred in the heat affected zone (HZA). The microstructure of the laser melted zone (LMZ) having epitaxially solidified from the HAZ was mainly celluar-dendritic with the 〈100〉 crystallographic direction of growth. The Cr concentration was observed to increase along the cell bondaries, and tiny particles were distributed along the cell walls with tangled dislocations around them. Cr-rich carbides had been completely melted by the high density of a laser beam, and were not re-precipitated during the matrix solidification due to a fast cooling rate in the LMZ.

  • PDF

Hot Cracking Susceptibility in Welds of High Strength Al Alloys by Using DCSP-GTAW (DCSP-GTAW에 의한 고력 Al합금의 고온균열감수성에 대한 연구)

  • Ha Ryeo-Sun;Jung Byong-Ho;Park Hwa-Soon
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2004
  • The tendency and degree of hot cracking of high strength 5083, 6N01 and 7N01 Al alloy welds by using DCSP-GTAW through modified Varestraint test and autogenous butt welding were investigated. In hot cracking test, 6N01 alloy showed the highest susceptibility to hot cracking in the weld metal and HAZ. Cracking susceptibilities generally increased with increase of solidification temperature range of the base metal and bead penetration-to-width ratio of the weld metal. The cracks in welds of the alloys vertically formed to solid-liquid interface and propagated along with columnar grain boundaries. The fracture facets of cracks showed the typical morphology of solidification crack observed as dendritic structures. Especially, in 6N01 alloy, liquation cracks which were due to elements of Si, Fe and Mg also observed in HAZ near fusion boundary. In butt welding of different Al alloys, the bead crack was mainly occurred in the welds of 6N01, 7N01 and other Al alloys together with 6N01 or 7N01. In the butt welds of 7N01, it was found that the component of Cu had an effect on the higher susceptibility to the hot cracking.

Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash (동결주조 다공질 뮬라이트 세라믹스의 제조와 석탄회의 재활용)

  • Kim, Kyu Heon;Yoon, Seog Young;Park, Hong Chae
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at $1500^{\circ}C$, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at $1300{\sim}1500^{\circ}C$ with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.

The Effect of Solidification Rate on Solidification Behavior in IN792+Hf Superalloy (IN792+Hf 초내열합금의 응고거동에 미치는 응고속도의 영향)

  • Bae, Jae-Sik;Kim, Hyeon-Cheol;Lee, Jae-Hyeon;Yu, Yeong-Su;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.502-507
    • /
    • 2001
  • The effect of solidification rate on the microstructure of directionally solidified IN792+ Hf superalloy has been studied. Solidification sequence and precipitation behavior of the alloy have been analysed by microstructural observation. The script carbide transformed to faceted carbide with decreasing solidification rates. The incorporation of ${\gamma}$ phase into the faceted carbide was due to dendritic growth of carbides. Some elongated carbide bars formed along the grain boundaries at a solidification rate of 0.5$\mu\textrm{m}$/s. Two zones, ${\gamma}$' forming elements enriched zone and depleted zone, were found in the residual liquid area. Eutectic ${\gamma}$/${\gamma}$' nucleated in the f forming elements enriched zone. Formation of eutectic ${\gamma}$/${\gamma}$' increased the ratio of (Ti+Hf+Ta+W)/Al and induced η phase precipitation. The ratio of (Ti+Hf+Ta+W)/Al decreased at lower solidification rates due to sufficient back diffusion in the residual liquid area. Hence, the Precipitation of the η Phase efficiently suppressed at the lower solidification rate.

  • PDF