• Title/Summary/Keyword: Demineralized

Search Result 239, Processing Time 0.024 seconds

An alternative treatment option for a bony defect from large odontoma using recycled demineralization at chairside

  • Lee, JuHyon;Lee, Eun-Young;Park, Eun-Jin;Kim, Eun-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • Odontoma is the most common odontogenic benign tumor, and the treatment of choice is generally surgical removal. After excision, bone grafts may be necessary depending on the need for further treatment, or the size and location of the odontoma. Although the osteogenic capacity of a demineralized tooth was verified as early as 1967 by Urist and many other investigators, the cumbersome procedure, including a long demineralization time, may be less than comfortable for clinicians. A modified ultrasonic technology, with periodic negative pressure and temperature control, facilitated rapid and aseptic preparation of demineralized teeth for bone grafts. This approach reduces the demineralization time dramatically (${\leq}80$ minutes), so that the graft material can be prepared chairside on the same day as the extraction. The purpose of this article is to describe two cases of large compound odonotomas used as graft material prepared chairside for enucleation-induced bony defects. These two clinical cases showed favorable wound healing without complications, and good bony support for future dental implants or orthodontic treatment. Finally, this report will suggest the possibility of recycling the benign pathologic hard tissue as an alternative treatment option for conventional bone grafts in clinics.

Grafting of Glycidyl Methacrylate upon Coralline Hydroxyapatite in Conjugation with Demineralized Bone Matrix Using Redox Initiating System

  • Murugan, R.;Rao, K.Panduranga
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.14-18
    • /
    • 2003
  • Grafting of glycidyl methacrylate (GMA) upon coralline hydroxyapatite in conjugation with demineralized bone matrix (CHA-DBM) using equal molar ratio of potassium persulfate/sodium metabisulfite redox initiating system was investigated in aqueous medium. The optimum reaction condition was standardized by varying the concentrations of backbone, monomer, initiator, temperature and time. The results obtained imply that the percent grafting was found to increase initially and then decrease in most of the cases. The optimum temperature and time were found to be 50 $^{\circ}C$ and 180 min, respectively, to obtain higher grafting yield. Fourier transform infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD) method were employed for the proof of grafting. The FT-IR spectrum of grafted CHA-DBM showed epoxy groups at 905 and 853 $cm^{-1}$ / and ester carbonyl group at 1731 $cm^{-1}$ / of poly(glycidyl methacrylate) (PGMA) in addition to the characteristic absorptions of CHA-DBM, which provides evidence of the grafting. The XRD results clearly indicated that the crystallographic structure of the grafted CHA-DBM has not changed due to the grafting reaction. Further, no phase transformation was detected by the XRD analysis, which suggests that the PGMA is grafted only on the surface of CHA-DBM backbone. The grafted CHA-DBM will have better functionality because of their surface modification and hence they may be more useful in coupling of therapeutic agents through epoxy groups apart from being used as osteogenic material.

Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment (PLGA 다공성 지지체에 함침시킨 DBP젤의 연골재생 효과: In Vivo 실험)

  • Lee, Yun Mi;Shim, Cho Rok;Lee, Yujung;Kim, Ha Neul;Jo, Sun A;Song, Jeong Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.789-794
    • /
    • 2012
  • Poly(lactic-co-glycolic acid) (PLGA) has been most widely used due to its advantages such as good biodegradability, controllable rate of degradation and metabolizable degradation products. We manufactured composite scaffolds of PLGA scaffold penetrated DBP gel (PLGA/DBP gel) by a simple method, solvent casting/salt leaching prep of PLGA scaffolds and subsequent soaking in DBP gel. Chondrocytes were seeded on the PLGA/DBP gel. The mechanical strength of scaffold, histology (H&E, Safranin-O, Alcian-blue) and immunohistochemistry (collagen type I, collagen type II) were performed to elucidate in vitro and in vivo cartilage-specific extracellular matrices. It was better to keep the characteristic of chondrocytes in the PLGA/DBP gel scaffolds than that PLGA scaffolds. This study suggests that PLGA/DBP gel scaffold may serve as a potential cell delivery vehicle and a structural basis for in vivo tissue engineered cartilage.

Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

  • Um, In-Woong;Hwang, Suk-Hyun;Kim, Young-Kyun;Kim, Moon-Young;Jun, Sang-Ho;Ryu, Jae-Jun;Jang, Hyon-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • Objectives: The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods: Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (${\mu}CT$) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results: Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a twofold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The ${\mu}CT$ analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion: Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites.

Histologic findings of three-wall intrabony defects around dental implants using different grafting materials in beagle dogs (수종의 골이식재를 이용한 성견의 임플란트 주위 3면 골내낭의 조직학적 관찰)

  • Moon, Hee-Il;Moon, Sang-Kwon;Shim, Chang-sung;Shim, Jung-Sung;Lee, Yong-Keun;Cho, Kyu-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.439-455
    • /
    • 2003
  • 연구목적 : SLA surface dental implant 주위의 3면 골내낭에서 xenogeneic demineralized bone matric putty, porous ${\beta}$-tri-calcium phosphate, 새로이 개발된 non-crystalline calcium phosphate glass를 사용한 치료를 조직학적으로 비교 평가하기 위한 것이다. 연구방법 : 실험동물로는 15개월에서 18개월 사이의 12kg에서 15kg 정도되는 성견을 사용하였다. 20개의 SLA surface implant가 사용되었으며, 성견 하악의 양측에 각각 2개씩 사용되었다. 임플란트 식립전에, 각각의 임플란트 근심면에 straight fissure bur를 이용하여 표준화된 3면 골내앙(근원심 5mm ${\times}$협설 3mm ${\times}$깊이 3mm)을 형성하였다. 형성된 골 결손부에는 demineralized bone matrix putty, porous ${\beta}$-tri-calcium phosphate, non-crystalline calcium phosphate glass를 넣은 것을 각각 실험군으로, 이식재를 넣지 않은 것을 대조군으로 사용하였다. 8주 후에 실험 동물을 희생시키고 조직학적 관찰을 하였다. 결과 : 조직학적 소견상 임플란트 주위에 급성 염증 소견은 보이지 않았으며, non-crystalline calcium phosphate glass은 매우 적은량의 신생골을, ${\beta}$-TCP을 이용한 골내낭에서는 약간의 기저부에서 유래된 신생골이 관찰된다. ${\beta}$-TCP granules 가운데로 상당량의 측면의 골에서 유래된 신생골 형성이 보인다. xenogeneic DBM putty에서는 많은 량의 신생골이 기저부에 형성된 것을 볼수 있으나 대조군과의 차이는 크지 않다. 이식재의 종류와 상관없이 흡수되지 않은 이식재를 임플란트 주위에서 관찰할 수 있었다. 골내낭 안의 이식재들은 모두 connective tissue로 둘러 싸여 있었다. 모든 실험군에서 이식재에서 기인한 신생골 형성과 임플란트 표면에 신생 골유착의 조직학적 증거는 발견되지 않았다.

EVALUATION OF ECTOPIC BONE FORMATION EFFECT BY DECALCIFIED DEGREE OF ALLOGRAFTS (동종이식골의 탈회정도가 이소성 골형성유도에 미치는 영향)

  • Yun, Hong-Sik;Chin, Byung-Rho;Shin, Hong-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.2
    • /
    • pp.139-147
    • /
    • 1998
  • This study has been performed to evaluate the relationship between the remained mineral components in a decalcified bone matrix and an ectopic bone formation efficiency. The freezed rat diaphyseal cortical bones measuring 0.5cm in length were demineralized in heated 0.6N HCl at $60^{\circ}C$ for 5, 10, 15, 20, 25, 30, 35, 40 minutes, respectively, using a controlled heat ultrasonic cleaner. Each 1cc of decalcifying solution taken during decalcification procedure was used to calculate calcium content using calcium dignostics kit under 600nm of spectrophotomer. After decalcification, each specimen was also weighed. Then each prepared specimen was implanted into the dorsal pouch of 24 Sprague-Dawley rats divided into 8 groups by time course. The implants were harvested at 1, 2, and 3 weeks and prepared for routine H-E stain specimens to evaluate osteogenic activity. The results are as follows: 1. There was statistical significant difference in change of calcium concentration up to demineralization of 30 minutes and each allogenic bones decalcifed up to 20 minutes revealed 99.65% of decalcification in average. 2. There was statistical significant difference in change of weight in demineralized allogenic bone up to 20 minutes treatment but, no significant change was noted after that time. 3. The histologic analysis revealed active ectopic bone formation in the implanted allografts demineralized for 20, 25, 30 minutes, respectively. However, the other groups of allografts showed relatively poor osteoinductive activity. These findings suggest that complete decalcification with a minimized degeneration of collagen matrix is necessary to induce maximal osteogenesis by decalcified bone allograft.

  • PDF

Coculture of Bovine Chondrocytes with Demineralized Bone Matrix in Alginate Bead and Pellet Cultures (알긴산 배양과 펠렛 배양에서 소연골세포와 탈회골기질의 공배양)

  • Sutradhar, Bibek Chandra;Hong, Gyeong-Mi;Park, Jin-Uk;Choi, Seok-Hwa;Kim, Gon-Hyung
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2010
  • Bio-integration of cartilage grafts with subchondral bone is a significant clinical challenge. To date, the use of demineralized bone matrix (DBM) has been one of the most effective strategies for bone cell proliferation in vivo. Here, we investigated whether coculture of chondrocytes and DBM could serve as a single-platform system containing all the essential elements for purposive bone and cartilage induction. The aim of this study was to evaluate and compare the phenotype and proliferation of bovine chondrocytes cocultured with DBM in two different culture systems, pellet and alginate bead culture. In alginate bead culture, we observed an increase in chondrocyte number and formation of cell clusters. Typical chondrocytic phenotype was maintained for entire eight weeks. Histological analysis showed that chondrocytes maintained a typical round, plump morphology and there was a gradual increase in lacunae. Both coculture systems yielded an expanded cell population as compared to the controls (chondrocytes alone). The production of glycosaminoglycans was also increased in the coculture systems as compared to controls.