• Title/Summary/Keyword: Demand controlled ventilation

Search Result 8, Processing Time 0.026 seconds

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

The Use of Demand Controlled Ventilation in Multi-Purposed Facility (수요기반 환기량 조절법 (DCV)의 다중이용시설 적용방안)

  • Jeong, Jae-Weon;No, Sang-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.111-116
    • /
    • 2008
  • The objective of this paper was to show the possibility of demand-controlled ventilation (DCV) using the current Korean ventilation standard for multi-purposed facilites. Two attractive DCV approaches; $CO_2$-DCV and RFID-DCV were applied to DCV simulations for a theoretical public assembly space served by a dedicated outdoor air system (DOAS) with enthalpy recovery device. A numerical model for predicting realtime occupant number, ventilation rate, and $CO_2$ concentration under given conditions was developed using a commercial equation solver program. It was found that the current ventilation standard causes unstable ventilation system control in DCV applications, especially under $CO_2$-DCV. It is because the ventilation rate (per person) used in Korea is the sum of the outdoor air required to remove or dilute air contaminants generated by both occupant and building itself, and not a pure function of occupant numbers. Finally, it makes DCV control unstable when ventilation flow is regulated only by the number of occupants. In order for solving this problem, current Korean ventilation standard was modified as a form of ASHRAE Standard 62.1-2007 showing good applicability to various DCV approaches. It was found that this modification enhances applicability of the current ventilation standard to DCV significantly.

  • PDF

An Evaluation on IR Sensor Based Demand Controlled Ventilation Strategies for Multi-zone in the Apartment House (IR(Infrared) 센서기반 제어방법에 따른 공동주택 멀티 존 환기시스템 평가 연구)

  • Hong, Sung-Min;Yoon, Dong-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.174-182
    • /
    • 2012
  • In previous research, most occupant said that they have not operated ventilation system installed in the house, because of increasing of energy consumption and unconcern of ventilation. Therefore, it is necessary to applied the sensor based demand controlled ventilation for the IAQ(Indoor Air Quality) and improvement of energy efficiency in ventilation strategy. The propose of this study is to present a application method of IR(Infrared) sensor for multi-zone DCV(Demand Controlled Ventilation) in the apartment house. It is possible that IR sensor could be used for DCV, because that could detect the occupant and action. IR sensor based DCV strategies are established to evaluate characteristic of application in the apartment house and simulated by Contam program. As a result, they have some week points though, if they would be applied DCV with optimum strategy, it would be useful to improve IAQ, to reduce energy consumption.

Energy Saving Potentials of Ventilation Controls Based on Real-time Vehicle Detection in Underground Parking Facilities

  • Cho, Hong-Jae;Park, Joon-Young;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.331-340
    • /
    • 2013
  • The main topic of this paper is to show a possibility of indoor air quality enhancement and the fan energy savings in underground parking facilities by applying the demand-controlled ventilation (DCV) strategy based on the real-time variation of the traffic load. The established ventilation rate is estimated by considering the passing distance, CO emission rate, idling time of a vehicle, and the floor area of the parking facility. However, they are hard to be integrated into the real-time DCV control. As a solution to this problem, the minimum ventilation rate per a single vehicle is derived in this research based on the actual ventilation data acquired from several existing underground parking facilities. And then its applicability to the DCV based on the real-time variation of the traffic load is verified by simulating the real-time carbon monoxide concentration variation. The energy saving potentials of the proposed DCV strategy is also checked by comparing it with those for the current underground parking facility ventilation systems found in the open literature.

Difference in Patient's Work of Breathing Between Pressure-Controlled Ventilation with Decelerating Flow and Volume-Controlled Ventilation with Constant Flow during Assisted Ventilation (보조환기양식으로서 감속형유량의 압력-조절환기와 일정형유량의 용적-조절환기에서 환자의 호흡일의 차이)

  • Kim, Ho-Cheol;Park, Sang-Jun;Park, Jung-Woong;Suh, Gee-Young;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.6
    • /
    • pp.803-810
    • /
    • 1999
  • Background : The patient's work of breathing(WOBp) during assisted ventilation may vary according to many factors including ventilatory demand of the patients and applied ventilatory setting by the physician. Pressure-controlled ventilation(PCV) which delivers gas with decelerating flow may better meet patients' demand to improve patient-ventilator synchrony compared with volume-controlled ventilation(VCV) with constant flow. This study was conducted to compare the difference in WOBp in two assisted modes of ventilation, PCV and VCV with constant flow. Methods : Ten patients with respiratory failure were included in this study. Initially, the patients were placed on VCV with constant flow at low tidal volume($V_{T,\;LOW}$)(6-8 ml/kg) or high tidal volume($V_{T,\;HIGH}$)(10-12 ml/kg). After a 15 minute stabilization period, VCV with constant flow was switched to PCV and pressure was adjusted to maintain the same tidal volume($V_T$) received on VCV. Other ventilator settings were kept constant. Before changing the ventilatory mode, WOBp, $V_T$, minute ventilation($V_E$), respiratory rate(RR), peak airway pressure (Ppeak), peak inspiratory flow rate(PIFR) and pressure-time product(PTP) were measured. Results : The mean $V_E$ and RR were not different between PCV and VCV during the study period. The Ppeak was significantly lower in PCV than in VCV during $V_{T,\;HIGH}$. HIGH ventilation(p<0.05). PIFR was significantly higher in PCV than in VCV at both $V_T$ (p<0.05). During $V_{T,\;LOW}$ ventilation, WOBp and PTP in PCV($0.80{\pm}0.37\;J/min$, $164.5{\pm}74.4\;cmH_2O.S$) were significantly lower than in VCV($1.06{\pm}0.39J/mm$, $256.4{\pm}107.5\;cmH_2O.S$)(p<0.05). During $V_{T,\;HIGH}$ ventilation, WOBp and PTP in PCV($0.33{\pm}0.14\;J/min$, $65.7{\pm}26.3\;cmH_2O.S$) were also significantly lower than in VCV($0.40{\pm}0.14\;J/min$, $83.4{\pm}35.1\;cmH_2O.S$)(p<0.05). Conclusion : During assisted ventilation, PCV with decelerating flow was more effective in reducing WOBp than VCV with constant flow. But since individual variability was shown, further studies are needed to confirm these results.

  • PDF

Analysis on the Optimum Location of an Wet Air Cleaner in a Livestock House using CFD technology (전산유체역학 기법을 이용한 돈사 내 습식 공기 정화기의 적정 위치 설계)

  • Kwon, Kyeong-Seok;Lee, In-Bok;Hwang, Hyun-Seob;Bitog, Jessie.P.;Hong, Se-Woon;Seo, Il-Hwan;Choi, Ji-Sun;Song, Sang-Hyeon;Moon, Oun-Kyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.19-29
    • /
    • 2010
  • In South Korea, as the living standard has been getting higher, meat consumption is steadily increasing. To meet the country's demand, livestock houses become larger and wider with increased raising density. In larger livestock houses, pollutants such as flake of pig skin, excrement, odor, various dusts and noxious gas like ammonia are excessively accumulated inside the facility. These will cause weak immunity for the pigs, diminution of productivity and degeneration of working condition. These problems can be solved through the ventilation performance of the facility. In the winter time, ventilation must be controlled to minimum to maintain a suitable thermal condition. However, this affects the other internal environmental condition because of the minimum ventilation. The installation of "wet air cleaner" especially in the winter time can be an alternative solution. For efficient application of this machine, there is a need to understand the existing ventilation condition and analyze the interaction of existing ventilation system with the wet air cleaner considering its appropriate location. In this study, the existing ventilation system as well as the internal environmental condition negatively inside the facility with the wet air cleaner has been studied using CFD technology. The CFD simulation model was validated from the study conducted by Seo et al. (2008). Results show that the elimination rate of ammonia was 39.4 % and stability could be improved to 35.1 % (Comparing case 5 to 1 where wet air cleaner machine was not used). It can therefore be concluded that case 5 shows the optimum location of a wet air cleaner in the livestock house.

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD

  • Gu, Xiaoyu;Yu, Yang;Li, Jianchun;Li, Yancheng;Alamdari, Mehrisadat Makki
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1101-1121
    • /
    • 2016
  • Base isolation, one of the popular seismic protection approaches proven to be effective in practical applications, has been widely applied worldwide during the past few decades. As the techniques mature, it has been recognised that, the biggest issue faced in base isolation technique is the challenge of great base displacement demand, which leads to the potential of overturning of the structure, instability and permanent damage of the isolators. Meanwhile, drain, ventilation and regular maintenance at the base isolation level are quite difficult and rather time- and fund- consuming, especially in the highly populated areas. To address these challenges, a number of efforts have been dedicated to propose new isolation systems, including segmental building, additional storey isolation (ASI) and mid-storey isolation system, etc. However, such techniques have their own flaws, among which whipping effect is the most obvious one. Moreover, due to their inherent passive nature, all these techniques, including traditional base isolation system, show incapability to cope with the unpredictable and diverse nature of earthquakes. The solution for the aforementioned challenge is to develop an innovative vibration isolation system to realise variable structural stiffness to maximise the adaptability and controllability of the system. Recently, advances on the development of an adaptive magneto-rheological elastomer (MRE) vibration isolator has enlightened the development of adaptive base isolation systems due to its ability to alter stiffness by changing applied electrical current. In this study, an innovative semi-active storey isolation system inserting such novel MRE isolators between each floor is proposed. The stiffness of each level in the proposed isolation system can thus be changed according to characteristics of the MRE isolators. Non-dominated sorting genetic algorithm type II (NSGA-II) with dynamic crowding distance (DCD) is utilised for the optimisation of the parameters at isolation level in the system. Extensive comparative simulation studies have been conducted using 5-storey benchmark model to evaluate the performance of the proposed isolation system under different earthquake excitations. Simulation results compare the seismic responses of bare building, building with passive controlled MRE base isolation system, building with passive-controlled MRE storey isolation system and building with optimised storey isolation system.