• Title/Summary/Keyword: Demand Side Management(DSM)

Search Result 64, Processing Time 0.027 seconds

An Implementation of a Current Controlled Inverter for Improved quality of the Grid (계통의 품질개선을 위한 전류제어형 인버터의 구현)

  • Lee S. S.;Jeon C. H.;Ko S. S.;Shin Y. C.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.515-518
    • /
    • 2004
  • Increasing of the nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostly the current controlled type. In this paper, we propose the power conditioner using photovoltaic system, which is operated by the PRT(Polarized Ramp Time) current control algorithm. The proposed system could also achieve Demand Side Management's function and Uninterruptible Power Supply's function simultaneously. To verify the proposed current controlled inverter for improved quality of the grid, the detail simulation and experiment results indicate that operation PCS, DSM and UPS can be achieved.

  • PDF

Analysis on the Power System Reliability Characteristics according to the High-Efficient End-Use Diffusion (고효율기기의 보급확산에 따른 전력시스템 공급신뢰도의 영향분석)

  • Chang, Seung-Chan;Hwang, Sung-Wook;Cho, Hyoung-Joon;Kim, Jung-Hoon;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.239-241
    • /
    • 1998
  • The probabilistic production simulation of power system generally has been used to formulate a reasonable power production plan or generation planning. It integrates the convolution process of a generating unit's random outage(FOR) with equivalent load duration curve(ELDC), and provides the reliability indices of power system. This paper presents the reliability characteristics of power system reflected on demand side management and proposes the modified ELDC representation technique due to the high-efficient end-use diffusion among the customers. Load reductions are simulated from the multi-state deconvolution process with the saved capacity of end-use. Case study shows the computed reliability from the power system production simulation incorporated with DSM planning scheme.

  • PDF

A Modified EGEAS Model with Avoided Cost and the Optimization of Generation Expansion Plan (회피비용을 고려한 EGEAS 모형 개발과 전원개발계획의 최적화)

  • 이재관;홍성의
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.1
    • /
    • pp.117-117
    • /
    • 1992
  • Pubilc utility industries including the electric utility industry are facing a new stream of privatization com-petition with the private sector and deregulation. The necewssity to solve now and in the future power supply and demand problems has been increasing through the sophisticated generation expansion plan(GEP) approach con-sidering not only KEPCo's supply-side resources but also outside resources such as non-utility generation(NUG) demand-side management (DSM). Under the environmental situation in the current electric utility industry a new approach is needed to acquire multiple resources competitively. This study presents the development of a modified electric generation expansion analysis system(EGEAS) model with avoided cost based on the existing EGEAS model which is a dynamic program to develope an optimal generation expansion plan for the electric utility. We are trying to find optimal GEP in Korea's case using our modified model and observe the difference for the level of reliabilities such as the reserve margin(RM) loss of load probability(LOLP) and expected unserved energy percent(EUEP) between the existing EGEAS model and our model. In addition we are trying to calculate avoided cost for NUG resources which is a criterion to evaluate herem and test possibility of connection calculation of avoided cost with GEP implementation using our modified model. The results of our case study are as follows. First we were able to find that the generation expansion plan and reliability measures were largely influenced by capacity size and loading status of NUG resources, Second we were able to find that avoided cost which are criteria to evaluate NUG resources could be calculated by using our modified EGEAS model with avoided cost. We also note that avoided costs were calculated by our model in connection with generation expansion plans.

Cost-Effectiveness Evaluation of Energy Conservation Programs Using Avoided Operating Cost Calculation (운전회피비용 계산을 이용한 효율향상 프로그램의 비용효과 분석)

  • 김회철;이기송;박종배;신중린;신점구
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.317-323
    • /
    • 2002
  • This paper proposed the calculation method of the generation operating avoided cost to cost-effectiveness evaluation of energy conservation programs that compounded the Proxy Plant Method and Load Decrement Method. This method introduced an operating index of the Energy Efficiency Demand-Side Management (EEDSM) resources based on the end-user's behaviors on the electricity power usage. The operation index is applied to calculate the hourly operating capacity of diffused high-efficiency appliances. And the operating capacity on the peak load hours for reference load is computed through the reduction of the peak load that contributes to that hour. Also, the proposed method evaluated the effect of EEDSM resources. The IEEE-RTS is adopted as a sample system to analyze impacts of an EEDSM. This paper, we have analyzed the effect of EEDSM upon the changes in the generation of generator, generation cost and the system marginal price (SMP). This method can be used to evaluate the impact of the diffused DSM resource and to estimate the impact in short-term EEDSM program. Further, result of the calculation can be utilized to pabulum for effect analysis of EEDSM resources.