• Title/Summary/Keyword: Demagnetization analysis

Search Result 62, Processing Time 0.021 seconds

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2012
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110kW class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnet design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

Effect of the magnetism(neodymium magnet) on growth factor receptors of osteoblasts (희토류 자석의 자성이 골모세포 성장인자 수용체의 증가에 미치는 영향에 관한 연구)

  • Lee, Sang-Min;Lee, Sung-Bok;Choi, Boo-Byung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.87-96
    • /
    • 2003
  • The purposes of this study were to find out the optimum intensity of magnetic field where magnetism could promote the activity of osteoblast, and to discover the possibility of clinical application in the areas of dental implants and bone grafts by confirming the effect of clinically increasing bone formation. In this experiment, we used the Neodymium magnet, which had magnetic power six times as strong as the current ones and enabled the resistances against the demagnetization up to 20 to 50 times to be minimized with the size of 1mm in sight. In order to culture cells, a specially designed device was used. It was made to adjust the distance and accordingly to control the intensity of the magnetic field, by placing the cell culture plate in the center with a magnet of 1mm long and thick installed on the both ends. Using MC3T3-E1 cell, a kind of osteoblast-like cell, we cultured, for 24 hours, not only the test group which had been cultured under the magnetic fields with different intensity of 5, 10, 50, 100, 500, and 1000 Gauss, but also the control group excluding the influences of the magnetic field. After observing the cell's form and the density of the culture medium through an inverted microscope, we made a series of proceedings needed for the immunofluoroscence staining, such as fixation, normal serum reaction, primary antibody reaction, and secondary antibody reaction. And with a fluorescence microscope, we observed those-above and compared the frequency of expression of IFG-1 receptor. To make a Western immunoblotting analysis, the cells cultured under the same condition as the above had the procedure of the lysis buffer and the acrylamide gel electrophoresis was carried out. Protein transferred into the nitrocellulose membrane and tested on the primary and the secondary antibody reactions was observed and compared. The results were as follows: When observed through an inverted microscope, the nuclear divisions of the cells under the magnetic field of 10 Gauss were the most active, and the density of the cells could be observed the most enormously. As the result of an immunofluoroscence staining of IGF-1 receptor, the expression of IFG-1 was the most frequently observed under the magnetic field of 10 Gauss. On the other hand, few differences of consideration were made between the test group cultured under the magnetic fields of 5, 500, and 1000 Gauss and the control group. In respect of the expression of IFG-1 receptor, the test group cultured under the magnetic fields of 50 and 100 Gauss were higher than the control group, and lower than that cultured under the magnetic field of 10 Gauss.(p<0.05) According to the Western immunoblotting analysis, the band of IFG-1 receptor which had 85KDa of molecular weight was the darkest. Judging from the above-mentioned results, the growth factor receptor of an osteoblast cell which was an important criterion for the bone formation was increased in maximum under the magnetic field of 10 Gauss. Moreover it was observed that the optimum intensity of magnetic field in which magnetism made the activity of the osteoblast cell increase was about 10 Gauss.