• Title/Summary/Keyword: Delivered Dose

Search Result 372, Processing Time 0.025 seconds

NUMERICAL STUDY ON BLOOD FLOW CHARACTERISTICS IN A ARTERIOVENOUS GRAFT WITH DELIVERED DOSE DURING HEMODIALYSIS (인조혈관 동정맥루의 혈액 투석량에 따른 인조혈관 내부 유동 특성에 관한 수치해석 연구)

  • Kim, J.Y.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Hemodialysis is essential for patients with end stage renal failure. It is important to improve the patency rate and to minimize occurrence of the stenosis. Also, the blood flow to the artificial kidney can affect the blood flow characteristics through arteriovenous graft. Thus, the delivered dose are important factors for analyzing hemodynamic characteristics during hemodialysis access. In this study, the numerical analysis was performed for the effect of the delivered dose during hemodialysis access on the blood flow through the graft. As a result, The adverse pressure gradient occurred in case of a larger delivered dose through a catheter than standard dose and the flow instability increased. Also the circulation flow appeared largely at anastomotic site of the vein when the delivered dose was exceeded about half blood flow of inlet blood flow.

Numerical Study on Blood Flow Characteristics in a Arteriovenous Graft with Delivered dose During Hemodialysis (혈액 투석 시 주사침에서의 투석량에 따른 인조혈관 내부 유동 특성에 관한 수치해석 연구)

  • Kim, J.Y.;Ro, K.C.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.469-476
    • /
    • 2011
  • Hemodialysis is essential for patients with end stage renal failure. It is important to improve the patency rate and to minimize occurrence of the stenosis. Also, the blood flow to the artificial kidney can affect the blood flow characteristics though arteriovenous graft. Thus, the delivered dose are important factors for analyzing hemodynamic characteristics during hemodialysis access. In this study, the numerical analysis was performed for the effect of the delivered dose during hemodialysis access on the blood flow through the graft. As a result, The adverse pressure gradient occurred in case of a larger delivered dose through a catheter than standard dose and the flow instability increased. Also the circulation flow appeared largely at anastomotic site of the vein when the delivered dose was exceeded about half blood flow of inlet blood flow.

  • PDF

Evaluation of Clinical Risk according to Multi-Leaf Collimator Positioning Error in Spinal Radiosurgery (척추 방사선수술 시 다엽콜리메이터 위치 오차의 임상적 위험성 평가)

  • Dong‑Jin Kang;Geon Oh;Young‑Joo Shin;Jin-Kyu Kang;Jae-Yong Jung;Boram Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.527-533
    • /
    • 2023
  • The purpose of this study is to evaluate the clinical risk of spinal radiosurgery by calculating the dose difference due to dose calculation algorithm and multi-leaf collimator positioning error. The images acquired by the CT simulator were recalculated by correcting the multi-leaf collimator position in the dose verification program created using MATLAB and applying stoichiometric calibration and Monte Carlo algorithm. With multi-leaf collimator positioning error, the clinical target volume (CTV) showed a dose difference of up to 13% in the dose delivered to the 95% volume, while the gross tumor volume (GTV) showed a dose difference of 9%. The average dose delivered to the total volume showed dose variation from -8.9% to 9% and -10.1% to 10.2% for GTV and CTV, respectively. The maximum dose delivered to the total volume of the spinal cord showed a dose difference from -14.2% to 19.6%, and the dose delivered to the 0.35 ㎤ volume showed a dose difference from -15.5% to 19.4%. In future research, automating the linkage between treatment planning systems and dose verification programs would be useful for spinal radiosurgery.

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

ORGAN DOSE, EFFECTIVE DOSE AND RISK ASSESSMENT FROM COMPUTED TOMOGRAPHY TO HEAD AND NECK REGION (두경부 전산화 단층촬영시의 주요 장기선량, 유효선량 및 위험도)

  • Kim Ae-Jj;Cho Bong-Hae;Nah Kyung-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • The organ or tissue doses were determined with head and neck phantom measurement for multiple axial scans (36 slices), multiple coronal scans (13 slices), 3 types of single axial scans(orbit, maxillary sinus and mandibular canal) and single coronal scan (maxillary sinus). For each scan sequence 30 TLDs were placed in selected sites(16 internal sites and 14 external sites) in a tissue-equivalent phantom. The exposure was made at 120kVp, 500mAs with 5 mm slice width. The results were as follows : 1. In multiple axial scans, the greatest effective dose recorded was that delivered to the thyroid glands(2.77 mSv) and the least was that received by the skin(0.05 mSv). From these data, stochastic effects were 202.2x10/sup -6/ and 3.7×10/sup -6/, respectively. 2. In multiple coronal scans, the greatest effective dose recorded was that delivered to the salivary glands(0.58 mSv) and the least was that received by the skin(0.01 mSv). From these data, stochastic effects were 42.2×10/sup -6/ and 0.7×10/sup -6/, repectively. 3. Among single axial scans, the greatest effective dose recorded was that delivered to the salivary gland(0.38 mSv) in maxillary sinus scan. From this data, stochastic effect was 27.7×10/sup -6/. 4. In single coronal scan, the greatest effective dose recorded was that delivered to the salivary gland(0.01 mSv). From this data, stochastic effect was 1.0×10/sup -6/. 5. The equivalent dose measured that delivered to the lens of the eyes was 69.64 mSv in multiple axial scan, 39.32 mSv in multiple coronal scan and 36.77 mSv in single axial scan(orbit).

  • PDF

EQUIVALENT DOSE, EFFECTIVE DOSE AND RISK ASSESSMENT FROM CEPHALOMETRIC RADIOGRAPHY TO CRITICAL ORGANS (두부규격방사선사진 촬영시 주요 장기의 등가선량, 유효선량 및 위험도)

  • Kang Seong-Sook;Cho Bong-Hae;Kim Hyun-Ja
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.309-318
    • /
    • 1995
  • In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites(18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The results were as follows: 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland(3.6pSv) and the next highest dose was that received by the bone marrow(3pSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland(2pSv) and the next highest dose was that received by the bone marrow(1.8pSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland(31A p Sv) and the next highest dose was that received by the salivary gland(13.3 p Sv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were $0.72{\times}10^{-6}$, $0.49{\times}10^{-6}$ and $3.51{\times}10^{-6}$, respectively

  • PDF

AN ELECTRON MICROSCOPIC STUDY ON THE EFFECTS OF IRRADIATION ON THE ACINAR CELLS OF RAT PAROTID GLAND (방사선조사가 백서 이하선의 선세포에 미치는 영향에 관한 전자현미경적 연구)

  • Ko Kwang Jun;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.31-45
    • /
    • 1988
  • The author studied the histopathologic changes according to a single or a split dose and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about l20gm, were divided into control and 3 experimental groups. In experimental groups, GroupⅠ and Ⅱ were delivered a single dose of l5Gy, 18Gy and Group Ⅲ and Ⅳ were delivered two equal split doses of 9Gy, 10.5Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222cGy/min, source-skin distance of 50㎝, depth of l㎝ and a field size of l2×5㎝. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electron microscopy. The results were as follows: 1. As the radiation dose increased and the acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split dose exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than that of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was the most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after irradiation in all experimental groups.

  • PDF

Fetal dose from Head and Neck Tomotherapy Versus 3D Conformal Radiotherapy

  • Park, So Hyun;Choi, Won Hoon;Choi, Jinhyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.156-160
    • /
    • 2019
  • Background: To compare the dose of radiation received by the fetus in a pregnant patient irradiated for head and neck cancer using helical tomotherapy and three-dimensional conformal radiation therapy (3DCRT). Materials and Methods: The patient was modeled with a humanoid phantom to mimic a gestation of 26 weeks. Radiotherapy with a total dose of 2 Gy was delivered with both tomotherapy (2.5 and 5.0 cm jaw size) and 3DCRT. The position of the fetus was predicted to be 45 cm from the field edge at the time of treatment. The delivered dose was measured according to the distance from the field edge and the fetus. Results and Discussion: The accumulated dose to the fetus was 1.6 cGy by 3DCRT and 2 and 2.3 cGy by the 2.5 and 5 cm jaw tomotherapy plans. For tomotherapy, the fetal dose with the 2.5 cm jaw was lower than that with the 5 cm jaw, although the radiation leakage was greater for 2.5 cm jaw plan due to the 1.5 fold longer beam-on time. At the uterine fundus, tomotherapy with a 5 cm jaw delivered the highest dose of 2.4 cGy. When the fetus moves up to 35 cm at the 29th week of gestation, the resultant fetal doses for 3DCRT and tomotherapy with 2.5 and 5 cm jaws were estimated as 2.1, 2.7, and 3.9 cGy, respectively. Conclusion: For tomotherapy, scattering radiation was more important due to the high monitor unit values. Therefore, selecting a smaller jaw size for tomotherapy may reduce the fetal dose. however, evaluation of risk should be individually performed for each patient.

An Analysis on Treatment Schedule of Carbon Ion Therapy to Early Stage Lung Cancer

  • Sakata, Suoh;Miyamoto, Tadaaki;Tujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.174-176
    • /
    • 2002
  • A total of 134 patients with stage 1 of non-small cell lung cancer treated by carbon ion beam of HIMAC NIRS were investigated for control rate and delivered dose. The delivered dose of every patient was converted to biological effective dose (BED) of LQ model using fraction number, dose per fraction and alpha beta ratio which shows the maximum correlation between BED and tumor control. The BED of every patient was classified to establish a BED response curve for control. Assuming fraction numbers, dose response curves were introduced from BED response curve. The total doses to realize several control rates were obtained for the treatment of small fraction number.

  • PDF

Radiation Dose from Computed Tomography Scans for Korean Pediatric and Adult Patients

  • Won, Tristan;Lee, Ae-Kyoung;Choi, Hyung-do;Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • Background: In recent events of the coronavirus disease 2019 (COVID-19) pandemic, computed tomography (CT) scans are being globally used as a complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. It will be important to be aware of major organ dose levels, which are more relevant quantity to derive potential long-term adverse effect, for Korean pediatric and adult patients undergoing CT for COVID-19. Materials and Methods: We calculated organ dose conversion coefficients for Korean pediatric and adult CT patients directly from Korean pediatric and adult computational phantoms combined with Monte Carlo radiation transport techniques. We then estimated major organ doses delivered to the Korean child and adult patients undergoing CT for COVID-19 combining the dose conversion coefficients and the international survey data. We also compared our Korean dose conversion coefficients with those from Caucasian reference pediatric and adult phantoms. Results and Discussion: Based on the dose conversion coefficients we established in this study and the international survey data of COVID-19-related CT scans, we found that Korean 7-year-old child and adult males may receive about 4-32 mGy and 3-21 mGy of lung dose, respectively. We learned that the lung dose conversion coefficient for the Korean child phantom was up to 1.5-fold greater than that for the Korean adult phantom. We also found no substantial difference in dose conversion coefficients between Korean and Caucasian phantoms. Conclusion: We estimated radiation dose delivered to the Korean child and adult phantoms undergoing COVID-19-related CT examinations. The dose conversion coefficients derived for different CT scan types can be also used universally for other dosimetry studies concerning Korean CT scans. We also confirmed that the Caucasian-based CT organ dose calculation tools may be used for the Korean population with reasonable accuracy.