• Title/Summary/Keyword: Delayed mode

Search Result 99, Processing Time 0.027 seconds

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

Development and Evaluation on a Model for Reducing SO2: Case Study on Global 2100 Model (산성비 원인물질인 이산화황 저감모형 구축과 평가에 관한 연구: Global 2100 모형을 중심으로)

  • Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Acid rain below pH 5.6 is responsible for 40% of annual precipitation in Korea and it is more serious especially in major cites. Because of that, it is urgent to make measures to reduce the emission of $SO_2$, one of the major air pollutants causing acid rain. The national total emission of $SO_2$ in 1994 was estimated as 1.6 million tons. The $SO_2$ emission in 2020, is expected to increase up to 3.2 million tons, about 2 times that of 1994 under Business-As-Usual scenario. We could take various $SO_2$ reduction measures such as installing desulfurization facilities, the supply of low-sulfur oil and clean fuel(LNG), energy savings, upgrading of production process. However, it is necessary to check the economic feasibility and the attainability to reduction target with a dynamic optimization mode, "Global 2100 Model". The cost-benefit analyses for the measures using the revised "Global 2100 Model" clearly revealed that the desulfurization facilities should be introduced to reduce the $SO_2$ concentration to 0.01 ppm with fuel substitution. If the introduction of desulfurization facilities is delayed, We can not attain the goal of Ministry of Environment before the year of 2012, even in the case that almost all the fuels would be substituted with LNG.

  • PDF

Effect of Onion Powder Addition on the Quality of White Bread (양파분말 첨가가 식빵의 품질특성에 미치는 영향)

  • 전순실;박정로;조영숙;김문용;김래영;김경옥
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.4
    • /
    • pp.346-354
    • /
    • 2001
  • Physicochemical properties of dough and bread supplemented with onion (Allium cepa L.) powder were investigated. Farinographic characteristics of dough showed that addition of onion by 2% and 4% increased water absorption, however, as the onion added more the water absorption decreased. Addition of 2% onion delayed time for development of dough a little, while more than 4% onion shortened the development time significant1y. A reduction in stability and an Increase in weakness of dough were observed by addition of onion. Addition of onion powder resulted in a reduction of extendibility and an increase in resistance to extension of dough as measured by extensograph. Amylographic analysis showed that addition of onion increased gelatinization temperature and decreased maximum viscosity. Moisture content, baking loss, height and volume of bread tended to decrease with the addition of onion powder. Lightness of bread crust and crumb decreased as the onion powder added more, while redness and yellowness increased. Bread tilth onion powder had mode free amino acid. especially, Arginine. aspartic acid, glutamic acid and alanine, than control. The addition of onion hardness of bread increased, but springiness decreased as the onion added more. Sensory evaluation of bread indicated that addition of 2% and 4% onion powder enhanced springiness, mouth feeling, appearance, hardness, moistness and overall acceptability.

  • PDF

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

Evaluation of The Neck Mass (경부종물의 진단)

  • Song, Kei-Won;Yoon, Seok-Keun;Choi, Byung-Heun
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 1986
  • As public awareness of the various warning signs of malignancy increases, so does the concern evoked by the self identified finding of mass in the head and neck area. Not all the palpable masses are always significantly abnormal, but any nontender mass especially to the adult is significant enough to warrent further full investigation and follow up, the object of which should be to determine the possibility of malignancy and urgency of treatment. Approach to the diagnosis of the neck mass is so important in that it affects decision regarding further evaluation would lead to the determination of the most efficacious mode of therapy, eventually to the good prognosis. So, it should be emphasized that approach to the diagnosis of neck mass should be planned, systematic and thorough, this begins with the taking careful history following performance of complete examination of the head and neck especially to the nasopharynx, tongue base, pyriform sinus, palatine tonsil and larynx. Then a number of laboratory and radiologic studies are available, following triple endoscopy under general anesthesia and blind biopsy if needed. The most important rule to keep is that any biopsy procedures should be delayed to the last modality of effort to the diagnosis and if it should be done, under the plan of radical neck dissection.

  • PDF

Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA (FMEA에서 계층적 시간 지연 모형에 근거한 위험평가)

  • Jang, Hyeon Ae;Lee, Min Koo;Hong, Sung Hoon;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.373-388
    • /
    • 2016
  • Purpose: This paper suggests a hierarchical time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). In place of the conventional RPN(risk priority number), a more reasonable and objective risk metric is proposed under hierarchical failure cause structure considering time delay between a failure mode and its causes. Methods: The structure of failure modes and their corresponding causes are analyzed together with the time gaps between occurrences of causes and failures. Assuming the severity of a failure depends on the length of the delayed time for corrective action, a severity model is developed. Using the expected severity, a risk priority metric is defined. Results: For linear and quadratic types of severity, nice forms of expected severity are derived and a meaningful metric for risk evaluation is defined. Conclusion: The suggested REM(risk evaluation metric) provides a more reasonable and objective risk measure than the conventional RPN for FMEA.

A Design and Fabrication of Test Equipment for Airborne Tracking Radar Test (항공기용 추적레이더 시험을 위한 시험장비의 설계 및 제작)

  • Yoon, Seung-Gu;Park, Seung-wook;Kwon, Jun-Bum;Jung, Man-Seek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.352-361
    • /
    • 2017
  • This paper proposes a design and fabrication of the test equipment that is implemented as a part of the airborne tracking radar inspection under the environment of indoor simulation. This test equipment provides controlling the operation status of airborne tracking radar and replicating the velocity and range information of target by generating a variety of target signal. This is mainly composed of radar operation controller, target signal generator, horn antenna driving devices. Radar operation controller is able to perform the controlling of radar operation mode and monitoring in real time by serial communication. Target signal generator is generated doppler signal and range delayed signal using virtual target of RF-band. Horn antenna driving devices perform a role of target simulating exercise. In the end, the performance is demonstrated using experiment results of test equipment for airborne tracking radar.

Fracture Toughness Embrittlement by Hydride in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 수화물에 의한 파괴인성 취화에 관한 연구)

  • Oh, Dong-Joan;Ahn, Sang-Bok;Park, Soon-Sam;An, Chang-Yun;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.93-98
    • /
    • 2000
  • Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of fracture toughness by hydride embrittlement in CANDU pressure tube which can result from the absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness test were performed from room temperature to $300^{\circ}C$ using three different specimens which have an AR (As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test temperature became higher they were decreased linearly. While, at room temperature, the hydrogenbsorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture toughness, the fracture characteristics became ductile such as AR specimen at high temperatures. Through the observation of fracture surface using SEM, it was found that the stress state of mixed mode could be related to the fissure which was believed to decrease the global fracture toughness.

  • PDF

Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel (예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.