• Title/Summary/Keyword: Delay and Congestion Speed

Search Result 55, Processing Time 0.025 seconds

An Adaptable Destination-Based Dissemination Algorithm Using a Publish/Subscribe Model in Vehicular Networks

  • Morales, Mildred Madai Caballeros;Haw, Rim;Cho, Eung-Jun;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-242
    • /
    • 2012
  • Vehicular Ad Hoc Networks (VANETs) are highly dynamic and unstable due to the heterogeneous nature of the communications, intermittent links, high mobility and constant changes in network topology. Currently, some of the most important challenges of VANETs are the scalability problem, congestion, unnecessary duplication of data, low delivery rate, communication delay and temporary fragmentation. Many recent studies have focused on a hybrid mechanism to disseminate information implementing the store and forward technique in sparse vehicular networks, as well as clustering techniques to avoid the scalability problem in dense vehicular networks. However, the selection of intermediate nodes in the store and forward technique, the stability of the clusters and the unnecessary duplication of data remain as central challenges. Therefore, we propose an adaptable destination-based dissemination algorithm (DBDA) using the publish/subscribe model. DBDA considers the destination of the vehicles as an important parameter to form the clusters and select the intermediate nodes, contrary to other proposed solutions. Additionally, DBDA implements a publish/subscribe model. This model provides a context-aware service to select the intermediate nodes according to the importance of the message, destination, current location and speed of the vehicles; as a result, it avoids delay, congestion, unnecessary duplications and low delivery rate.

The Ramp Metering System Construction of Urban Freeway by the Intelligent Transportation System (ITS) Technology (첨단교통체계(ITS)에 의한 도시고속도록의 Ramp Metering 시스템 구축에 관한 연구)

  • 김태곤
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • Today freeway is thought to be a very important transportation facility carrying tremendous traffic flow as the main corridor within the area of between the areas. However freeway is experiencing severe congestion and accidents by increased entrance ramp flow especially at peak time period. Ramp meters on the freeway entrance ramps that supply traffic to the freeway in a measured or appropriately regulated amount are needed for alleviating freeway congestion. Because ramp meters can be operated to discharge traffic at a measured or regulated rate thus maintaining more uniform speed on the mainline section maximizing the throughput to the freeway within the capacity of a downstream bottleneck and reducing the congestion related accidents. Thus the objectives in this study were to analyze the traffic characteristics on the freeway I-94 with ramp metering system before/after ITS technology in Detroit (Michigan) area compare shifts of the traffic characteristics on the freeway I-94 before/after ITS technology and finally suggest a better ramp metering strategy for the freeway system The following results were obtained: i)Flow occupancies and speeds on the mainline merge section of freeway were shown to be a big difference depending on the peak periods areas and directions based on the distribution of traffic flow characteristics on the freeway. ii)Reduced speed was shown to be more than 5 mph and ramp flow was also shown to be more than 240 vph at peak periods if there was the ramp metering system constructed on the freeway. iii)Ramp metering system was shown to be optimally operated on the freeway if ramp flow could be maximized within the range of over 900 vph and reduced occupancy could be also maximized by no more than 2 percent at peak periods. iv)The average flows on the freeway after the ITS technology were shown to be a decrease of over 20% depending on the peak periods areas and directions when compared with those flow on the freeway before the ITS technology. over 20% depending on the peak periods areas and directions when compared with those speeds on the freeway before the ITS technology. vi)The average metering rates on the freeway after the ITS technology were shown to be an increase of over 10% depending on the peak periods areas and directions when compared with those metering rates on the freeway before the ITS technology.

  • PDF

Prediction of Traffic Speed in a Container Terminal Using Yard Tractor Operation Data (내부트럭 운영 정보를 이용한 컨테이너 터미널 내 교통 속도예측)

  • Kim, Taekwang;Heo, Gyoungyoung;Lee, Hoon;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • An important operational goal of a container terminal is to maximize the efficiency of the operation of quay cranes (QCs) that load and/or unload containers onto and from vessels. While the maximization of the efficiency of the QC operation requires minimizing the delay of yard tractors (YT) that transport containers between the storage yard and QCs, the delay is often inevitable because of traffic congestion. In this paper, we propose a method for learning a model that predicts traffic speed in a terminal using only YT operation data, even though the YT traffic is mixed with that of external trucks. Without any information on external truck traffic, we could still make a reasonable traffic forecast because the YT operation data contains information on the YT routes in the near future. The results of simulation experiments showed that the model learned by the proposed method could predict traffic speed with significant accuracy.

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

Slective Buffering Macro Handover Which Applies The F-SNOOP in Hierarchical structure (계층 구조에서 F-SNOOP을 적용한 선택적 버퍼링 매크로 핸드오버)

  • Ahn Chi-Hyun;Kim Dong-Hyun;Kim Hyoung-Chul;Ryou Hwang-Bin;Lee Dae-Young;Jun Kye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.413-420
    • /
    • 2006
  • HMIPv6 is designed to reduce the signaling load to external network and improve handover speed of MN by including Mobility Anchor Point(MAP) in local handover. However in this case of macro handover, it's just used pervious MIPv6 handover algorithm. So, it occurs packet loss and transmission delay problem. In this paper, we propose the mechanism applying the HMIPv6 for Fast Handover to choose suitable to the condition buffering handover. The condition for the selection is result distance measurement between MN and CN, between MN and NAR. Furthermore, using F-SNOOP protocol, it is possible to improve wireless network performance. Wireless network has high Bit Error Rate(BER) characteristic because of path loss, fading, noise and interference. TCP regards such errors as congestion and starts congestion control. This congestion control makes packet transmission rate low. However, F-SNOOP improves TCP performance based on SNOOP and Freeze TCP that use Zero Window Advertisement(ZWA) message when handoff occurs in wireless network.

Enhanced TFRC for High Quality Video Streaming over High Bandwidth Delay Product Networks

  • Lee, Sunghee;Roh, Hyunsuk;Lee, Hyunwoo;Chung, Kwangsue
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.344-354
    • /
    • 2014
  • Transmission control protocol friendly rate control (TFRC) is designed to mainly provide optimal service for unicast applications, such as multimedia streaming in the best-effort Internet environment. However, high bandwidth networks with large delays present an environment where TFRC may have a problem in utilizing the full bandwidth. TFRC inherits the slow-start mechanism of TCP Reno, but this is a time-consuming process that may require many round-trip-times (RTTs), until an appropriate sending rate is reached. Another disadvantage inherited from TCP Reno is the RTT-unfairness problem, which severely affects the performance of long-RTT flows. In this paper, we suggest enhanced TFRC for high quality video streaming over high bandwidth delay product networks. First, we propose a fast startup scheme that increases the data rate more aggressively than the slow-start, while mitigating the overshooting problem. Second, we propose a bandwidth estimation method to achieve more equitable bandwidth allocations among streaming flows that compete for the same narrow link with different RTTs. Finally, we improve the responsiveness of TFRC in the presence of severe congestion. Simulation results have shown that our proposal can achieve a fast startup and provide fairness with competing flows compared to the original TFRC.

A Study on the Development of an Economic Efficiency Model Considering Vehicle Operating Cost Properties of Signalized Intersections (신호교차로의 차량운행비용 특성을 고려한 경제성분석 모형개발)

  • Byeon, Eun-A;Kim, Yeong-Chan;An, So-Yeong;Go, Gwang-Deok;Yun, Su-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.199-206
    • /
    • 2009
  • In relation with economical efficiency analysis on investment evaluation of transportation system, among vehicle operating cost saving benefit that is applied to general preliminary assessment guidelines and investment evaluation guidelines, oil expense calculated data which concentrated and analyze on the relationship between oil consumption amount on running state and running speed. For uninterrupted flow which does not have stopped delay due to traffic signal, consideration for reduction benefit is possible due to the changes of running speed and travel time however, for interrupted flow which the stopping occurs due to signal control on actual signal intersection has no consideration for stopping delay time reduction and stopping rate improvement thus reflection of reality on improved effect analysis is difficult. Therefore, this research makes a framework to analyze benefits that reflects the features of signalized intersections by benefits associated with decrease of stopping delay time with existing research and developing vehicle operating cost calculation model formula. Vehicle operating cost has been redefined considering the stopping delay time by applying the oil consumption amount at idling and the economical benefit between conventional model and newly developed model when applied for the optimization of traffic signal system on the two roads in Seosan city has been analyzed comparative. While the importance of traffic system maintenance is being emphasized due to the increase of congested areas on roads, it is expected to assist in more realistic economical analysis which reflect the delay improvement through the presentation of an economic analysis model that considers the features of signalized intersections in signal optimization system improvements and effect analysis of congestion improvement projects`.

A New Implementable Scheduling Algorithm Supporting Various Traffics in ATM Networks (ATM 망에서 다양한 트래픽을 지원하기 위한 동적 셀 스케줄링 알고리즘)

  • 심재정;이원호;변재영;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.675-682
    • /
    • 2000
  • In this paper, we propose a new scheduling algorithm called the Adaptive Weighted Round Robin with Delay Tolerance (AWRR/DT). The proposed scheme is based on the per-class queueing mechanism in which a number of connections of similar characteristics are multiplexed into one class-queue. Traffic classes of the proposed method are classified into a single non-real-time traffic class and other real-time traffic classes. The proposed scheme determines the weights of classes according to the input traffic and delay characteristics of each class at the beginning of every cycle. Furthermore, this scheme incorporates a cell discarding method to reduce the QoS degradation that may be incurred by congestion of networks. We have evaluated the proposed scheme through discrete-event simulation. Simulation results indicate that the proposed scheme can reduce the average delay of non-real-time class while maintaining the QoS of real-timeclasses. The proposed algorithm can be effectively applied to high-speed networks such as ATM networks.

  • PDF

An Analysis of the Vulnerable-Pedestrian Crossing Time in Test Crosswalk (설험용 횡단보도에서 교통약자 가로횡단시간 분석)

  • Kim, Tae-Ho;Hu, Uk;Hwang, Eu-Pyo;Won, Jai-Mu
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.90-98
    • /
    • 2008
  • Presently, pedestrian's signal time models in korea are not considering Vulnerable-Pedestrian. So, the safety of Vulnerable-Pedestrian is being threatener and the number of accidents is increasing. Besides, the existing operational system for pedestrians can't offer the cross signal time in road corresponded the changing environment when the school zone is revitalized and the Silver zone is introduced for Vulnerable-Pedestrian. Conclusively, Vulnerable-Pedestrian's signal time models which are able to consider classified Vulnerable-Pedestrian speed, Vulnerable-Pedestrian perception-reaction time, Vulnerable-Pedestrian Spare(congestion-delay) time are suggested by the result of experiment in virtual crosswalk. the application of suggested models in this study to the site. It is possible to use as a basic stuff on study of pedestrian's signal time and expected to contribute the safety and mobility in future.

Transmission of Continuous Media by Send-rate Control and Packet Drop over a Packer Network (패킷망에서 전송율 제어와 패킷 폐기에 의한 연속 미디어 전송방안)

  • 배시규
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1999.12a
    • /
    • pp.121-129
    • /
    • 1999
  • When continuous media are transmitted over the communication networks, asynchrony which can not maintain temporal relationships among packets may occur due to a random transit delay. There exist two types of synchronization schemes ; for guaranteed or non-guaranteed resource networks. The former which applies a resource reservation technique maintains delay characteristics, however, the latter supply a best-effort service. In this paper, I propose a intra-media synchronization scheme to transmit continuous media on general networks not guaranteeing a bounded delay tome. The scheme controls transmission times of the packets by estimating next delay time with the delay distribution. So, the arriving packets may be maintained within a limited delay boundary, and playout will be performed after buffering to smoothen small delay variations. The continually increasing delay due to network overload causes buffer underflow at the receiver. To solve it, the transmitter is required to speed up instantaneously. Too much increase of transmission-rate may cause network congestion. At that time, the transmitter drops the current packet when informed excessive delay from the receiver.

  • PDF