• Title/Summary/Keyword: Delamination area

Search Result 113, Processing Time 0.028 seconds

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

Damage of Composite Laminates by Low-Velocity Impact (저속충격에 의한 복합재료 적층판의 손상)

  • AHN SEOK-HWAN;KIM JIN-WOOK;DO JAE-YOON;KIM HYUN-SOO;NAM KI-WOO
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.39-43
    • /
    • 2005
  • The study investigated the nondestructive characteristics of damage, caused by law-velocity impact, on symmetric cross-ply laminates, composed of [0o/90o]16s, 24s, 32s, 48s. The thickness of the laminates was 2, 3, 4 and 6 mm, respectively. The impact machine used, Model 8250 Dynatup Instron, was a drop-weight type that employed gravity. The impact velocities used in this experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec, respectively. Both the load and the deformation increased when the impact velocity was increased. Further, when the load increased with the laminate thickness in the same impact velocity, the deformation still decreased. The extensional velocity was quick, as the laminate thickness increased in the same impact velocity and the impact velocity increased in the same laminate thickness. In the ultrasonic scans, the damaged area represented a dimmed zone. This is due to the fact that the wave, after the partial reflection by the deflects, does not have enough energy to touch the opposite side or to come back from it. The damaged laminate areas differed, according to the laminate thickness and the impact velocity. The extensional velocities are lower in the 0o direction and higher in the 90o direction, when the size of the defect increases. However, it was difficult to draw any conclusion for the extensional velocities in the 45o direction.

A Terrestrial LiDAR Based Method for Detecting Structural Deterioration, and Its Application to Tunnel Maintenance (터널 유지관리를 위한 지상 LiDAR 기반의 구조물 변상탐지 기법 연구)

  • Bae, Sang Woo;Kwak, Jae Hwan;Kim, Tae Ho;Park, Sung Wook;Lee, Jin Duk
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.227-235
    • /
    • 2015
  • In recent years, owing to the frequent occurrence of natural disasters, the inspection and maintenance of structures have become increasingly important on a national scale. However, because most structural inspections are carried out manually, and due to the lack of objectivity in data acquisition, quantitative data are not always available. As a result, researchers are seeking ways to collect and standardize survey data using terrestrial laser scanning, thereby bypassing the limitations associated with visual investigations. However, field data acquired using a laser scanner have been required to measure changes in structure geometry resulting from passive deterioration. In this study, we demonstrate that it is possible to identify the processes of structural deterioration (e.g., efflorescence, leakage, delamination) using intensity data from terrestrial laser scanning. Additionally, we confirm the viability of automated classification of alteration type and objectification of the polygon area by establishing intensity characteristics. Finally, we show that our method is effective for structural inspection and maintenance.

A Study of Failure Mechanism through abnormal AlXOY Layer after pressure Cooker Test for DRAM device (DRAM 소자의 PCT 신뢰성 측정 후 비정상 AlXOY 층 형성에 의해 발생된 불량 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Chae-Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.31-36
    • /
    • 2018
  • This research scrutinizes the reason of failure after pressure cooker test (PCT) for DRAM device. We use the physical inspecting tools, such as microscope, SEM and TEM, and finally find the discolor phenomenon, corrosion of Al and delamination of inter-metal dielectric (IMD) in the failed devices after PCT. Furthermore, we discover the abnormal $Al_XO_Y$ layer on Al through the careful additional measurements. To find the reason, we evaluate the effect of package ball size and pinhole in passivation layer. Unfortunately, those aren't related to the problems. We also estimate halide effect of Al. The halogens such like Cl are contained within EMC material. Those result in the slight improving of PCT characteristics but do not perfectly solve the problems. We make a hypothesis of Galvanic corrosion. We can find the residue of Ti at the edge of pad open area. We can see the improving the PCT characteristics by the time split of repair etch. The possible mechanism of the PCT failure can be deduced as such following sequence of reactions. The remained Ti reacts on the pad Al by Galvanic corrosion. The ionized Al is easily react with the $H_2O$ supplied under PCT environment, and finally transfers to the abnormal $Al_XO_Y$ layer.

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

Effect of various MEA fabrication methods on the PEMFC durability testing at high and low humidity conditions (MEA 제조 방법에 따른 상대습도 변화가 PEMFC 내구성에 미치는 영향)

  • Kim, Kun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.2-86.2
    • /
    • 2010
  • In order to improve polymer electrolyte membrane fuel cell (PEMFC) durability, the durability of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, is one of the vital issues. Many articles have dealt with catalyst layer degradation of the durability-related factors on MEAs in relation to loss of catalyst surface area caused by agglomeration, dissolution, migration, formation of metal complexes and oxides, and/or instability of the carbon support. Degradation of catalyst layer during long-term operation includes cracking or delamination of the layer which result either from change in the catalyst microstructure or loss of electronic or ionic contact with the active surface, can result in apparent activity loss in the catalyst layer. Membrane degradation of the durability-related factors on MEAs can be caused by mechanical or thermal stress resulting in formation of pinholes and tears and/or by chemical attack of hydrogen peroxide radicals formed during the electrochemical reactions. All of these effects, the mechanical damage of membrane and degradation of catalyst layers are more facilitated by uneven stress or improper MEA fabrication process. In order to improve the PEMFC durability, therefore, it is most important to minimize the uneven stress or improper MEA fabrication process in the course of the fabrication of MEA. We analyzed the effects of the MEA fabrication condition on the PEMFC durability with MEA produced using CCM (catalyst coated membrane) method. This paper also investigated the effects of MEA fabrication condition on the PEMFC durability by adding additional treatment process, hot pressing and pressing, on the MEA produced using CCM method.

  • PDF

Performance Evaluation of PAN Nanofiber Air Filter Fabricated by Electrospinning (전기방사에 의해 제조한 PAN 나노섬유 공기필터 성능평가)

  • Kim, Kyungcheol;Kim, Taeeun;Lee, JungKoo;Ahn, Jiwoong;Park, Sungho;Kim, Hyungman
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.885-890
    • /
    • 2015
  • Nanomaterials possess unique mechanical, physical, and chemical properties. They are small, and have an ultrahigh surface area, making them suitable for air filter applications. Electrospinning has been recognized as an efficient technique for fabricating polymer nanofibers. In order to determine the optimum manufacturing conditions, the effects of several electrospinning process parameters on the diameter, orientation, and distribution of polyacrylonitrile (PAN) nanofiber are analyzed. To improve interlaminar fracture toughness and suppress delamination in the form of laminated non-woven fibers by using a heat roller, the performances of filter efficiency and pressure drop achieved with PAN nanofiber air filter are evaluated experimentally.

Investigation of Cutting Characteristics of Linear Hotwire Cutting System and Bonding Characteristics of Expandable Polystyrene Foam for Variable Lamination Manufacturing(VLM) Process (가변 적층 쾌속 조형 공저 개발을 위한 발포 폴리스티렌폼의 선형 열선 절단시스템 절단 특성 및 접착강도 특성에 대한 연구)

  • Ahn, Dong-Gyu;Lee, Sang-Ho;Yang, Dong-Yol;Shin, Bo-Sung;Lee, Yong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.185-194
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain of RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S), and to investigate characteristics of part material, cutting characteristics by using linear hotwire cutting system and bonding. Experiments were carried out to investigate mechanical properties of part material such as anisotropy and directional tensile strength. In order to obtain optimal dimensional accuracy, surface roughness, and reduced cutting time, addition experiments were performed to find the relationship between cutting speed and cutting offset of hotwire, and heat generation of hotwire per unit length. So, adhesion strength tests according to ASTM test procedure showed that delamination did not occur at bonded area. Based on the data, a clover-shape was fabricated using unit shape part(USP) it is generated hotwire cutting. The results of present study have been reflected on the enhancement of the VLM-S process and apparatus.

  • PDF

Detecting the Honeycomb Sandwich Composite Material's Moisture Impregnating Defects by Using Infrared Thermography Technique

  • Kwon, Koo-Ahn;Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Choi, Won-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method.