• Title/Summary/Keyword: Deionized Water

Search Result 474, Processing Time 0.024 seconds

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.

Effect of iron and selenium status on glutathione peroxidase activity and lipid peroxidation in rats

  • Lee, Beom-jun;Nam, Sang-yoon;Lee, Yong-soon;Park, Jae-hak
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.679-688
    • /
    • 1999
  • The combined effects of iron and selenium status on glutathione peroxidase (GSHPx) activity, cytochrome P-450 activity, and lipid peroxidation in the liver and intestinal mucosa of rats were investigated. In experiment one, four experimental groups (+Se+Fe, -Se+Fe, +Se++Fe, -Se++Fe) were manipulated for 3 weeks with intramuscular administration of irondextran (++Fe) and/or normal diet (+Fe) and deionized water (-Se) and/or selenium-supplemented deionized water (+Se). In experiment two, 2% dietary carbonyl iron (instead of the parenteral administration) was fed for 3 weeks to rats. Body weight of rats was significantly decreased in both parenterally and orally iron-overloaded groups (p<0.01), regardless of Se supplement. Serum iron was significantly increased in parenterally iron-overloaded groups but it was marginally increased in orally iron-overloaded groups. There was no significant difference in hemoglobin content among experimental groups in either experiment one or two. Total iron in the small intestine, intestinal mucosa, and livers was significantly high in both parenterally and orally iron-overloaded rats, regardless of selenium status. In the liver and intestine, GSHPx activity was significantly higher in all selenium-supplemented groups, compared to Se-deficient groups (p<0.01) and lipid peroxidation was significantly enhanced in both parenterally and orally iron-overloaded groups, compared to iron-adequate groups. There was no significant difference in cytochrome P-450 activity in the livers between groups in both experiment one and two. These results indicated that GSHPx activity in liver and intestinal mucosa was depended on selenium status, regardless of iron status, and iron-overload enhances lipid peroxidation in liver and intestinal mucosa by increasing the tissue iron content.

  • PDF

A Study on Lithium Leaching from the Fly Ash of Taean Electric Power Plant (태안화력발전소 비산재로부터 리튬용출연구)

  • Kim, Kang-Joo;Lee, Eun-Gyu;Lee, Jae-Cheol;Hwang, Soo-Yeon;Kim, Chang-Hyeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • The leaching of Li from fly ashes was studied. The fly ash produced from the Taean electric power plant of the Korea Western Power Co., Ltd. was used for this study. The Li leaching was observed according to the changes in solid:solution ratio, solution types (seawater or deionized water), and the $CO_2$ condition in the atmosphere. The results showed that the Li concentrations in the solution increased continuously as the solid:solution ratio increased. The Li leaching per unit mass of fly ash was greater when the deionized water was used for the experiment and when the $CO_2$ dissolution is limited during the reaction because the precipitation of $CaCO_3$ is suppressed under those conditions. At high solid:solution ratio, $Mg^{2+}$, the ion preventing the Li extraction from seawater by adsorption, was effectively removed from the seawater.

A STUDY ON THE SOLUBILITY OF DENTAL RESTORATIVE MATERIALS (치과용 수복재의 용해성에 관한 분석연구)

  • Na, Keung-Kyun;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.87-105
    • /
    • 1991
  • The purpose of this experiment was to measure the leaking and solubility of commonly used dental restorative materials - Silux plus (CS), Hi-pol (CH), Clearfil F-II, Fissureseal (FS), Glass-Ionomer cement Fuji Type II (GI), Amalgam Cavex 68 (AM), Zinc Phosphate Cement (ZP) and gutta-percha (GP) and investigate the relation between the solubility and marginal leakage. Disc-shape specimens were fabricated with each material and dipped into deionized water, 0.01M lactic acid and 0.005M KOH solution, thus the total ionic concentrations in each solution was measured with ion chromatograph after 1, 3, and 7 days, respectively. For the solubility test, each specimen was immersed in 0.001M and 0.01M lactic acid for 24 hours, respectively and total weight loss was calculated. Also, Zn leaking through the margin of restorations was measured. The obtained results were as follows: 1. The amounts of eluted ion from the eight materials were most in 0.01M lactic acid and least in deionized water. 2. Of the eight materials, the fluoride release was greatest for glass ionomer cement (GI) in 0.01 M lactic acid after 7 days. 3. In analysis of the divalent cation, Mg was eluted most for zinc phosphate cement (ZP) and Ca for Clearfil F-II (CF) in 0.01M lactic acid after 7 days. 4. In analysis of transition metals, Cu and Zn were detected only. 5. The solubility rate of eight materials was greater in 0.01M lactic acid than in 0.001M for 24 hours, for zinc phosphate cement (ZP) the rate was greatest (5.4%) in 0.001M lactic acid, and amalgam least (0.01%). 6. The Zn concentration of restorative material with Z.P.C base was greater in 0.01M lactic acid than in 0.001M lactic acid.

  • PDF

The effect of red and white wine on color changes of nanofilled and nanohybrid resin composites

  • Tanthanuch, Saijai;Kukiattrakoon, Boonlert;Peerasukprasert, Thanwalee;Chanmanee, Nilobon;Chaisomboonphun, Parnchanok;Rodklai, Apisara
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.130-136
    • /
    • 2016
  • Objectives: This study investigated the effect of red and white wine on color changes of nanofilled and nanohybrid resin composite. Materials and Methods: Sixty specimens of each resin composite were prepared. Baseline data color values were recorded using a spectrophotometer. Three groups of discs (n = 20) were then alternately immersed in red, white wine, and deionized water (as a control) for twenty five minutes and artificial saliva for five minutes for four cycles. Specimens were then stored in artificial saliva for twenty two hours. This process was repeated for five days following immersion in artificial saliva for two days. Subsequently, the process was repeated again. Data were analyzed by two-way repeated ANOVA, one-way ANOVA, and Tukey's HSD. Results: Red wine caused significantly higher color change (${\Delta}E^*$ > 3.3) than did white wine and deionized water (p < 0.05). Nanohybrid resin composites had significantly more color changes than nanofilled resin composite (p < 0.05). Conclusions: The effect of red and white wine on the color changes of resin composite restorative materials depended upon the physical and chemical composition of the restorative materials and the types of wine.

A Study on Alumina Nanoparticle Dispersion for Improving Injectivity and Storativity of CO2 in Depleted Gas Reservoirs (고갈 가스전에서 CO2 주입성 및 저장성 향상을 위한 알루미나 나노입자의 분산 특성 연구)

  • Seonghak Cho;Chayoung Song;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • In this study, the Al2O3 nanofluid was synthesized as an additive for improving the injection efficiency and storage capacity of carbon dioxide (CO2) in a depleted sandstone reservoir or deep saline aquifer. As the base fluid, deionized water (DIW) and saline prepared by referring to the composition of API Brine were used, and the fluid was synthesized by using Al2O3 nanofluid with CTAB (cetyltrimethyl-ammonium bromide), a cationic surfactant. After that, the dispersion stability was evaluated by using visual observation, dynamic light scattering (DLS), transmission electron microscope (TEM), and miscibility test. As a result, it was presented that stable nanofluid without agglomeration and precipitation after reaction with 70,000 ppm of brine could be synthesized when the nanoparticle concentration was 0.05 wt% or less.

Effect of different storage media on elemental analysis and microhardness of cervical cavity margins restored with a bioactive material

  • Hoda Saleh Ismail;Brian Ray Morrow;Ashraf Ibrahim Ali;Rabab Elsayed Elaraby Mehesen;Salah Hasab Mahmoud;Franklin Garcia-Godoy
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.1
    • /
    • pp.6.1-6.16
    • /
    • 2024
  • Objectives: This study aimed to investigate the elemental analysis and microhardness of a bioactive material (Activa) and marginal tooth structure after storage in different media. Materials and Methods: Fifteen teeth received cervical restorations with occlusal enamel and gingival dentin margins using the tested material bonded with a universal adhesive, 5 of them on the 4 axial surfaces and the other 10 on only the 2 proximal surfaces. The first 5 teeth were sectioned into 4 restorations each, then stored in 4 different media; deionized water, Dulbecco's phosphate buffered saline (DPBS), Tris buffer, and saliva. The storage period for deionized water was 24 hours while it was 3 months for the other media. Each part was analyzed by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis for different substrates/distances and the wt% of calcium, phosphorus, silica, and fluoride were calculated. The other 10 teeth were sectioned across the restoration, stored in either Tris buffer or saliva for 24 hours or 3 months, and were evaluated for microhardness of different substrates/areas. Data were analyzed using analysis of variance and Tukey's post hoc test. Results: Enamel and dentin interfaces in the DPBS group exhibited a significant increase in calcium and phosphorus wt%. Both silica and fluoride significantly increased in tooth structure up to a distance of 75 ㎛ in the 3-month-media groups than the immediate group. Storage media did not affect the microhardness values. Conclusions: SEM-EDS analysis suggests an ion movement between Activa and tooth structure through a universal adhesive while stored in DPBS.

Preparation and Super-Water-Absorbency of Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate) (Poly(sodium acrylate-co-acrylamide-co-2-hydroxyethyl acrylate)의 제조와 고흡수 특성)

  • Zhang Yuhong;Deng Min;He Peixin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.286-292
    • /
    • 2006
  • Super water-absorbent resins were prepared by inverse suspension copolymerization of sodium acrylate, acrylamide and 2-hydroxyethyl acrylate using N, N'-methylene-bis-acrylamide as cross-linker. For the suspension copolymerization, monohexadecyl phosphate was employed as the dispersing agent, cyclohexane as the dispersing medium and potassium persulfate as the initiator. The dependence of water-absorption capacity on the amount of crosslinking agent, oil/water ratio, degree of neutralization and the composition of the copolymer were systematically investigated. Furthermore, the swelling kinetics of the super water-absorbent copolymer was carried out. The absorption of the resins is more than 1800 g/g for deionized water and 100 g/g for 0.9% NaCl solution, respectively. The copolymers showed an increased salt resistance and enhanced water retention of soil.

Removal of Some Metals in Drinking Water by Preparing Barley or Corn Tea (보리차 및 옥수수차 제조에 따른 음용수 중 일부 금속들의 제거)

  • 이수형;박송자;김희갑
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • Barley or corn tea, which is usually prepared with municipal chlorinated tap water, is commonly consumed by the public as a substitute for the supplied water itself. This is because most people believe that harmful organic and inorganic compounds can be removed from the tap water by the adsorption mechanism during the tea preparation. In this study, three kinds of commercial grain tea materials-roasted barley grains, a tea bag containing barley grain pieces, and roasted corn grains-were tested for metal removal by preparing 1 liter of tea with deionized/distilled water according the manufacturer's recommended preparation procedures, assuming that the water is contaminated with eight selected metals at levels of 50$\mu\textrm{g}$/l. Of the tested teas, barley tea prepared with roasted grains showed the highest removal efficiency for Cu, As, Ni, Co, Pb, and Cd, ranging from 48 to 71%, followed by corn tea with roasted grains and barley tea with a tea bag. Cr was nearly maintained at the initial concentration in all kinds of tea. The Mn levels. however, were elevated during the tea preparation, particularly in both barley teas, probably because the metal was extracted into the water from the tea materials without significant adsorption. Therefore, it should be considered in the ingestion exposure analysis for metals that their concentrations are altered during the tea preparation with roasted barley or corn grain materials.

  • PDF

Influence of Water Hardness on Accumulation of Heavy Metals in Kidneys and Livers of Rats (물의 경도가 흰쥐의 신장, 간에서 중금속 축적에 미치는 영향)

  • 한돈희
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.2
    • /
    • pp.51-64
    • /
    • 1988
  • It has been suggested that calcium is only one of many metals that compete with toxic metals in the body. Therefore, this study was carried out to determine the influence of water hardness on accumulation of heavy metals in rats. The seventy-five rats were divided into control and case groups. Case group was subdivided into four subgroups in proportion to the concentration of water hardness respectively, such as, 0, 250, 500, 1000ppm. Control group was fed on only deionized water, but case groups were fed on hard water with ionized heavy metals (Cd 150mg + Pb 300mg + Cu 300mg/l) for 20, 40, 60 days. The concentrations of cadmium, lead and copper were measured by atomic absorption spectrophotometry (Perkin Elmer 2380) in livers and kidneys. The results of the study are summarized as following 1. The concentration of cadmium accumulation showed the tendency of decrease in proportion to water hardness in both livers and kidneys of rats having been fed for only 60 days, respectively. 2. In only livers of rats having been fed for 60 days, essential metal, copper had the tendency of decrease according as hardness in water. 3. It was impossible to compare case with control about the tendency of lead accumulation because there was no difference between the two in livers and kidneys respectively.

  • PDF