• Title/Summary/Keyword: Deintercalation

Search Result 52, Processing Time 0.023 seconds

Charge-discharge Behaviour of Lithium Ion Secondary Battery Using LiCo$O_2$ Synthesized by a Solution Phase Reaction (액상 반응에 의해 합성한 리튬코발트산화물을 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수;심윤보
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1049-1054
    • /
    • 1998
  • The LiCo$O_2$ powder was synthesized by a solution phase reaction. This shows a high (003) peak intensity and low (104) or (101) peak intensities in X-ray diffraction spectra. The LiCo$O_2$/Li cell shows an initial discharge capacity of 102.9mAh/g and an average discharge potential or 3.877V at a current density of 50mA/g between 3.0~4.2V. The peaks of dQ/dV plot are associated with Li ion intercalation/deintercalation reaction. To evaluate the cycleability of an actual battery system, cylindrical lithium ion cell was manufactured using graphitized MPCF anode and LiCoO$_2$ cathode. After 100th cycle, this cel maintains 80% capacity of 10th cycle value. The LiCoO$_2$/MPCF cell has a high discharge voltage of 3.6~3.7V and a good cycle life performance on cycling between 4.2~2.7V.

  • PDF

Stability of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathode Material for Lithium Secondary Battery (리튬 2차 전지용 Li[Co0.1Ni0.15Li0.2Mn0.55]O2 양극물질의 안정성 고찰)

  • Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.443-449
    • /
    • 2007
  • The structural and thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ electrode during cycling process was studied. The sample was prepared by simple combustion method. Although there were irreversible changes on the initial cycle, O3 stacking for $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ structure was retained during the first and subsequent cycling process. Impedance of the test cell was decreased after the first charge-discharge process, which would be of benefit to intercalation and deintercalation of lithium ion on subsequent cycling. As expected, cycling test for 75 times increased impedance of the cell a little, instead, thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ was improved. Moreover, based on DSC analysis, the initial exothermic peak was shifted to high temperature range and the amount of heat was also decreased after cycling test, which displayed that thermal stability was not deteriorated during cycling.

Charge/discharge Properties As a Function of Synthetic Conditions of $LiMnO_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 합성조건에 따른 충방전 특성)

  • Cho, Young-Jai;Kim, Jong-Uk;Park, Gye-Choon;Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic $LiMnO_2$ was synthesized by solid-state reaction using $LiOH{\cdot}H_{2}O$ and $Mn_{2}O_{3}$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diiffraction revealed that the $LiMnO_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of $LiMnO_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications. the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of $160-170mAhg^{-1}$ for $LiMnO_2/Li$ cell was achieved.

  • PDF

Electrochemistry Characteristics of $Li_4Ti_5O_{12}$ Anode Electrode for Li-ion Battery (리튬전지용 $Li_4Ti_5O_{12}$ 음극전극의 전기화학적 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.340-341
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\sim$ 3.0 V. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.

Fabrication of Carbon Nanofiber/Graphite Electrodes for Lithium Ion Secondary Battery (리튬이온 2차전지용 탄소나노섬유/흑연 복합재 전극의 제조)

  • Kwon, kyong-Hee;Moon, Seung-Hwan;Kim, Myung-Chan;Oh, Se-Min;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.130-140
    • /
    • 2003
  • In order to improve the lithium ion battery's performance, the carbon nanofibers were introduced to the anode electrode fabricated with natural graphite particles. The influence of structural adjustment of the particles by the introduction method of carbon nanofibers and the content of carbon nanofibers on the electrical property and charge/discharge characteristics of the electrode were investigated. The electrode fabricated with the mixture of 10 wt% of carbon nanofibers grown separately and 90 wt% of graphite particles showed an excellent discharge capacity of 400 mAh/g and the improved cycle performance. The improved performance could be explained by that the carbon nanofibers shortened and uniformly distributed on the surface of graphite particles by ball milling increased the stability for the intercalation/deintercalation of lithium ion and increased the electrical conductivity due to the closed packing between graphite particles.

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration (암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화)

  • Park, Seonhye;Hong, Soonhyun;Jeon, Hyeonggwon;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.636-640
    • /
    • 2020
  • Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.

Charge/discharge Properties As a Function of Synthetic Conditions of LiMnO$_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 LiMnO$_2$의 합성조건에 따른 충방전 특성)

  • 조영재;김종욱;박계춘;위성동;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic LiMnO$_2$ was synthesized by solid-state reaction using LiOH$.$H$_2$O and Mn$_2$O$_3$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diffraction revealed that the LiMnO$_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of LiMnO$_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications, the LiMnO$_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170mAhg$^{-1}$ for LiMnO$_2$/Li cell was achieved

  • PDF

Preparation and Characterization of $Li_4Ti_5O_{12}$ using Sol-Gel Method for Lithium Secondary Battery (Sol-Gel 방법을 이용한 리튬이차전지용 $Li_4Ti_5O_{12}$의 제조 및 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Gyu-Sik;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1989-1991
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of $1.0{\sim}3.0V$. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF