• Title/Summary/Keyword: Dehumidifier

Search Result 91, Processing Time 0.036 seconds

Experimental Study on Influence of Flow Rate Ratio in a Dehumidifier with a Solar Desiccant Apparatus (태양열제습장치 중 제습기에서의 유량비 영향에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Rokhman, Fatkhur
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.8-15
    • /
    • 2011
  • 제습기의 역할은 태양열제습냉방시스템 요소 중에서도 매우 중요하다. 본 논문은 이러한 특성에 맞추어 제작된 장치를 갖고서 제습능력에 영향을 미치는 유량비를 바꾸어 실험한 결과이다. 실험은 크기가 $40m^3$인 항온항습실을 대상으로 이루어졌으며, 향류형 제습기의 수직 높이는 0.4m로 고정되었다. 또한 충진층은 액체흡수제와의 접촉면을 넓게하기 위하여 플라스틱 충진재로 채워져 있으며, 흡수제의 온도는 빠른 변화를 보기 위하여 $15^{\circ}C$로, 농도는 40%로 고정하였다. 액체흡수제의 유량과 습도가 높은 공기의 유량을 각각 3단계로 바꾸어 실험한 결과, 풍량이 높을수록 제습기 효과는 낮아졌으나, 전체적인 제습량에서는 많아졌다. 한편, 제습기에서 액체흡수제 유량이 많을수록 제습되는 수분량이 많아졌으나, 시간의 변화에 따라 제습되는 속도는 현저하게 낮아졌다. 따라서, 향후 실험에서는 유량의 변화 폭을 더욱 확대해서 많은 실험 결과를 확보하고, 이를 모델링화 하여 높은 정확도를 예측할 필요가 있다.

Study on the Energy Efficiency Improvement of Hybrid Dehumidification Air Conditioning System Compared with Refrigeration System (냉각식 시스템과 비교한 복합식 제습냉방시스템의 냉각 열량증가에 관한 실험적 연구)

  • Lee Su-Dong;Park Moon-Soo;Chung Jin-Eun;Choi Young-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.952-959
    • /
    • 2004
  • The hybrid liquid desiccant air conditioning system has been in use for many years, primarily in industrial process applications requiring dehumidification and humidity control. In this study, the hybrid dehumidifier has been designed to study the dehumidification characteristic of the aqueous triethylene glycol (TEG) solution. The experimental results show energy efficient characteristics of hybrid liquid desiccant air conditioning system compared with the refrigeration system in terms of energy use, the difference of pressure loss between hybrid liquid desiccant air conditioning system and refrigeration system. Data obtained are useful for design guidance and performance analysis of the hybrid air conditioning system.

Optimization of Heat exchanger Capacity to Maximize the Performance and Energy Efficiency of TEM Dehumidifiers (열전모듈 제습기의 제습 능력 및 에너지 효율 극대화를 위한 열교환기 용량 최적화)

  • Lee, Tae-Hee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.13-20
    • /
    • 2021
  • The capacity optimization of the heat exchanger of the TEM dehumidifier was performed through numerical analysis. If the ratio of the size of heat exchangers on the cold and hot surfaces of the TEM is not appropriate, the larger the size of the heat exchanger results the lower performance and efficiency. Optimizing the ratio of heat exchangers on the cold surface of TEM can improve the performance and the efficiency compared to when the ratio is 50%. The optimal proportion of cold surface heat exchangers is inversely proportional to the sum of the size of the heat exchangers on the cold and hot surfaces. When the optimum ratio of cold surface heat exchanger was applied, the larger the sum of size of the two heat exchangers results the greater the improvement of the performance and efficiency, compared to when the ratio of cold surface heat exchangers is 50%.

A Study on Shape Improvement of Dehumidifier for Pneumatic System using Computational Fluid Dynamics (전산유체역학을 이용한 공압시스템용 제습장치의 형상 개선에 관한 연구)

  • Jeong, Eun-A;Yun, So-Nam;Lee, Kee-Yoon
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, flow analysis and dehumidification experiment were conducted on hollow fiber membrane module to determine the dehumidification characteristics of its various configurations. A quantitative analysis of the CFD for four different models with a temperature of $30^{\circ}C$ and 30%RH inlet humidity was conducted. Each model has different shape parameters i.e. the number of hollow fiber membranes and the presence or absence of baffles. After comparison between the flow analysis results and dehumidification experiment results, the percentage error was found to be approximately 2%. The moisture removal rate for each model was calculated using flow analysis data. It was found that the moisture removal rate of refined model with three baffles and eight hollow fiber membranes was highest among the four modeled modules of hollow fiber membrane one, i.e. about 60%.

Analysis of Cooling Effect for Cooling System with Dehumidifier in Greenhouse by CFD simulation (CFD 시뮬레이션에 의한 온실포그냉방 시스템과 제습장치의 냉방효과 분석)

  • 김문기;권혁진
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.11a
    • /
    • pp.59-62
    • /
    • 2001
  • 여름철 온실내 고온 문제를 해결하기 위해 이용되는 자연환기형 포그냉방은 환기가 충분치 못할 경우 온실 내부의 습도가 증가하여 증발 효율이 떨어지는 문제가 발생한다. 제습장치를 이용하여 온실 내부의 상대습도를 낮추면 증발 냉각 효율을 높일 수 있을 것으로 생각된다. 본 연구에서는 제습장치를 이용한 포그냉방 온실에 대한 CFD 모델을 개발하여 온실의 열환경 및 수분 환경을 분석하고자 한다. (중략)

  • PDF

Heat Transfer Characteristics of a Circular Fin-tube Heat Exchanger (원형휜-원형관의 열전달 특성)

  • 강희찬;조동영;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.762-767
    • /
    • 2003
  • An experimental study was conducted to investigate the heat transfer characteristics of a circular finned-tube heat exchanger. The nineteen cases of configuration varying fin material, fin outer diameter and fin pitch were tested by means of the experiment and the numerical calculation. The measured heat transfer data for the circular finned-tube heat exchanger were provided. A transition of heat transfer was found in the case of low fin pitch. The thermal conductivity of fin affected on the pure heat transfer coefficient.

A Study on the Interrelationship among Service Quality, Customer Satisfaction and Customer Loyalty by Distribution Channel, in the Dehumidifier Goods Industry (제습기산업의 유통경로별 서비스품질이 고객만족 및 고객충성에 미치는 상호관계에 대한 연구)

  • Kim, Kyusik;Ree, Sangbok
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.665-684
    • /
    • 2014
  • Purpose: The purpose of this study was to test and verify on the interrelationship among Service Quality, and Customer Satisfaction and Customer Loyalty in the Humidifier Goods industry. Especially, we study on the relative importance of each CS variables by distribution channel. Nowadays, most of manufacturing companies are proceeding the product servitization, which is combined service contents with product characteristics in the field of manufacturing industries. Methods: We surveyed humidifier purchaser about the some of CS variables and analyzed it using SPSS 21.0 and AMOS 21.0 as a statistical analysis tool. We use the frequency analysis, confirmatory factor analysis, multi-regression analysis and structural equation modeling analysis for our empirical study. Results: As the result of study, we find that Service Quality(SQ) influence Customer Satisfaction(CS) and CS influence Customer Loyalty(CL). Also, we verify that CS works mediate interaction on the effects between SQ and CL. And there are the significant relative effect of SQ to Customer Satisfaction in some of distribution channel. Conclusion: Finally, we make certain that the market size of the Humidifier goods industry will be increased rapidly. And the distribution channe l is more important to medium and small-sized enterprise. So, we have to pay attention to the study on the distribution channel of the Humidifier goods industry. And then, we expect more researches and studies on Service Quality and Customer Satisfaction in the field of manufacturing industries.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

Improving Efficiency of Dehumidifiers via Nature-Inspired Technology (제습기의 에너지 효율증가를 위한 자연모사기술의 제안)

  • Yun, Seongjin;Song, Kyungjun;Park, Byung Kil;Kim, Wandoo;Kang, Sanghyeon;Lee, Sun Yong;Lim, Hyuneui
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.211-219
    • /
    • 2013
  • Even though global warming and humid climate have resulted in an increase of use of dehumidifiers, they are not becoming more common because of high energy consumption. Furthermore, conventional dehumidifier technology finally reaches the limit to increase energy efficiency of water collection. As an alternative, nature-inspired technology may lead to a major breakthrough in the dehumidification performance. In order to improve the efficiency of dehumidifiers, we first analyze the energy consumption of commercial dehumidifiers and then study bioinspired water collection methods adopted by Namib beetles and grass.