• Title/Summary/Keyword: Degree of polymerization

Search Result 397, Processing Time 0.022 seconds

A Development of Nontoxic Composite Latex Using $CaCO_3$/PEMA ($CaCO_3$/Poly ethyl methacrylate를 이용한 무독성 혼합라텍스의 개발)

  • Seul, Soo-Duk;Lee, Sun Ryong;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.133-139
    • /
    • 2002
  • Core-shell polymers of inorganic/organic pair, which are consisted of both core and shell component, were synthesized by sequential emulsion polymerization using ethyl methacrylate (EMA) as a shell monomer and ammonium persulfate as initiator. We found that $CaCO_3$ core should be prepared by adding 2.0wt% SDBS(sodium dodecyl benzene sulfonate), $CaCO_3$ core/PEMA shell polymerization was carried out on the surface of $CaCO_3$ particle during EMA shell polymerization in the core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring the degree on decomposition of $CaCO_3$ by HCI solution, thermal decomposition of polymer composite on thermogravimetric analyzer, glass transition temperature on differential scanning calorimeter, and morphology using scanning electron microscope.

Studies on the Graft Polymerization-Graft Polymerization of Styrene to Polyvinyl Alcohol by Ultraviolet Light (Graft 重合에 關한 硏究-紫外線 照射에 依한 Polyvinyl alcohol 과 Styrene 의 Graft 重合에 關하여)

  • Shim, Jyong-Sup;Jun, Kyong-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.64-68
    • /
    • 1962
  • The graft polymerization of styrene to polyvinyl alcohol using a photosensitizer(benzophenone) and ultraviolet light was studied. Styrene was grafted onto polyvinyl alcohol up to when polyvinyl alcohol was pre-immersed in water and irradiated by ultraviolet light for 24 hours styrene solution of benzophenone(0.01 molarity). The highest percentage of graft obtained in the grafting which was proceeded in the presence of water added immediately before irradiation was 29%. The grafting was proportional to irradiation time within a certain limit of time, i.e., 24 hours, and presumably was initiated at the surface. After a certain degree of grafting a definite maximum was reached. Graft polymer prepared in this experiment showed high resistance to various solvents.

  • PDF

Theoretical Studies on the Polymerization of Divinylbenzene (Divinylbenzene 중합의 이론적 고찰)

  • Tae Oan Ahn;Dong Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.46-49
    • /
    • 1972
  • Using an assumption of isoviscosity at the gel-point in the polymerization of divinylbenzene, the relations between viscosity equation, viscosity-molecular weight, and the chain transfer equation have been studied. A new equation for the calculation of chain transfer constant, $C_{tr}$, by measuring the gel time in place of the degree of polymerization has been suggested.

  • PDF

Electron Beam -Induced Graft Polymerization of Acrylic Aicd on Polypropylene Nonwoven Fabrics(I) (전자빔 가속기를 이용한 폴리프로필렌 섬유의 개질(I) - 전자빔 조사에 따른 폴리프로필렌 섬유의 물리적, 열적 특성변화 -)

  • ;N.I. Shtanko
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • Before studying graft polymerization of PP(polypropylene) nonwoven fabrics by electron beam preirradiation method, mechanical properties, thermal properties and degree of crystallinity of original and electron beam irradiated PP nonwoven fabrics were investigated. Morphological surface changes of electron beam irradiated PP nonwoven fabrics were not observed. And the melting temperature and crystallinity of electron beam irradiated PP nonwoven fabrics also did not change as compared with untreated PP nonwoven fabrics. But the breaking strength of electron beam irradiated PP nonwoven fabrics decreased with increasing electron beam absorbed dose due to breakdown of some parts of polymer main chain.

Chemical Characteristics and Ethanol Fermentation of the Cellulose Component in Autohydrolyzed Bagasse

  • Asada Chikako;Nakamura Yoshitoshi;Kobayashi Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.346-352
    • /
    • 2005
  • The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation using Pichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.

Preparation of Polystyrene particles based on interfacial stability of suspension polymerization (현탁중합의 계면안정에 따른 폴리스티렌 입자 제조)

  • 이진호;이상남;박문수;김은경;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.65-78
    • /
    • 2002
  • The suspension polymerization of styrene was carried out to obtain the narrow-size distribution of particle by using poly(vinyl alcohol) (PVA) as suspension stabilizer according to the degree of hydrolysis and the molecular weight. The stabilizing properties of suspension are also dependent on the interfacial tension of aqueous solution when PVA is added. When the polymerization process was carried out with low hydrolyzed PVA, it gave single, well-defined particles, while high hydrolyzed PVA gave clusters. The size of particle produced in this study ranged between 5${\mu}{\textrm}{m}$ and 10${\mu}{\textrm}{m}$. The suspending agent, PVA, influences on the drop size and drop stability, When the molecular weight of PVA is increased, the drop size decreases and the drops become more stable toward coalescence. An increase in the PVA concentration decreases the mean drop size and narrows the drop size distribution.

  • PDF

Dehydrogenative Polymerization of New Alkylsilanes Catalyzed by $Cp_2MCl_2$/Red-Al System (M=Ti, Hf)

  • 우희권;김숙연;조은정;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 1995
  • Substituted 3-phenyl-1-silabutanes, 3-chlorophenyl-1-silabutane (1), 3-tolyl-1-silabutane (2), and 3-phenoxyphenyl-1-silabutane (3), were prepared in 68-98% yield by reduction of the corresponding substituted 3-phenyl-1,1-dichloro-1-silabutanes with LiAlH4. The dehydrogenative homopolymerization and copolymerization of the silanes were performed with Cp2MCl2/Red-Al (M=Ti, Hf) catalyst system. The molecular weights of the resulting polymers were in the of range 600 to 1100 (vs polystyrene) with degree of polymerization (DP) of 5 to 8 and polydispersity index (PDI) of 1.6 to 3.8. The monomer silanes underwent the dehydrogenative polymerization with Cp2TiCl2/Red-Al catalyst to produce somewhat higher molecular weight polysilanes compared with Cp2HfCl2/Red-Al catalyst.

Improvement method for viscosity measurement of high viscosity paper and fabric cultural heritages (고점도 지류 및 섬유 문화재의 점도 측정 개선 방법 연구)

  • Kim, Young-Hee;Hong, Jin-Young;Jo, Chang-Wook;Kim, Soo Ji;Lee, Jeung-Min;Seo, Min Seok;Choi, Kyoung Hwa
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.20-29
    • /
    • 2013
  • Paper, textile and wood materials are mainly consisted of cellulose. Cellulose is high molecule and make up the strong crystalline structure by hydrogen bonds. In particular, the polymerization degree of cellulose are closely related to the strength of fiber, and the permanence. the useful life of fiber, also depends on the degradation of this substance. The viscosity of cellulose is considered to be an important indicator of fiber damage in high molecule polymers. The viscosity measurements with CED solution is used to measure the molecular weight and the degree of polymerization of cellulose. Cellulose viscosity of wood fibers is measured with TAPPI standard method T230. However, TAPPI standard method T230 is difficult to completely dissolving the cellulose of high molecular weight and large degree of polymerization, such as Korea traditional papers and fabrics made with mulberry, ramie, cotton fibers. In this study, The high viscosity of hanji and fabric was measured with TAPPI standard method T254. T254 method is that the cellulose specimen with the proper amount of weaker (0.167M CED) solution, and completely dissolved with the stronger (1.0M CED) solution. It was found that cellulose with high degree of polymerization was dissolved more easily in general CED method.

  • PDF

Comparison of the degree of conversion of light-cured resin cement in regard to porcelain laminate thickness, light source and curing time using FT-IR (도재 라미네이트 두께와 광원 및 광조사 시간에 따른 광중합형 레진 시멘트의 FT-IR을 이용한 중합도 비교)

  • Yuh, Chi-Sung;Kim, Jee-Hwan;Kim, Sun-Jai;Lee, Yong-Keun;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2009
  • Statement of problem: The degree of light attenuation at the time of cementation of the PLV restoration depends on characteristics such as thickness, opacity and shade of the restorations, which interfere with light transmittance and, as a result, may decrease the total energy reaching the luting cement. Purpose: The purpose of this study was to compare the degree of conversion of light-cured resin cements measuring by FT-IR in regard to different thickness, light devices and curing time. Material and methods: In the control group, a clear slide glass (1.0 mm) was positioned between the light cured resin cement and light source. The specimens of ceramics were made with IPS Empress Esthetic. The ceramics were fabricated with varying thicknesses-0.5, 1.0, 1.5 mm with shade ETC1. Rely $X^{TM}$ Veneer with shade A3, light-cured resin cement, was used. Light-activation was conducted through the ceramic using a quartz tungsten halogen curing unit, a light emitting diode curing unit and a plasma arc curing unit. The degree of conversion of the light-cured resin cement was evaluated using FT-IR and OMNIC. One-way ANOVA and Tukey HSD test were used for statistical analysis ($\alpha$< .05). Results: The degree of conversion (DC) of photopolymerization using QTH and LED was higher than results of using PAC in the control group. After polymerization using QTH and LED, the DC results from the different ceramic thickness- 0.5 mm, 1.0 mm, 1.5 mm- did not show a significant difference when compared with those of control group. However, the DC for polymerization using PAC in the 1.5mm ceramic group showed significantly lower DC than those of the control group and 0.5 mm ceramic group (P<.05). At 80s and 160s, the DC of light-cured resin cement beneath 1.0 mm ceramic using LED was significantly higher than at 20s (P<.05). Conclusion: Within the limitation of this study, when adhering PLV to porcelain with a thickness between 0.5-1.5 mm, the use of PAC curing units were not considered however, light cured resin cements were effective when cured for over 40 seconds with QTH or LED curing units. Also, when curing the light cured resin cements with LED, the degree of polymerization was not proportional with the curing time. Curing exceeding a certain curing time, did not significantly affect the degree of polymerization.

Studies on the Preparation of Conducting Composite Film by a Vapor Phase in situ Polymerization (전도성 복합필름의 기상중합과 특성에 대한 연구)

  • Park, Jun-Seo;Park, Jang-Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.902-906
    • /
    • 1999
  • Electrically conducting composite films were prepared by a vapor phase in situ polymerization of pyrrole in the methyl cellulose film containing a copper(II) perchlorate. Methylcellulose had high affinity to pyrrole and was used as a matrix polymer. Conducting polypyrrole was embedded in the methylcellulose film forming a conducting network and the conductivity of the composite films ranged $10^{-1}$ to $10^{-7}S/cm$. The conductivities of conducting composite films were dependent on the nature of the matrix polymers, concentration of oxidant and polymerization time. In situ polymerization of pyrrole was observed in the matrix polymer and confirmed by UV-vis spectra. From the results of the thermogravimetric analysis, the chemical oxidative polymerization of pyrrole in the matrix polymers did not give any negative effects on the thermal stability of the composite films. Electron micrograph of composites indicated good penetration of PPy in the matrix polymer. DMA suggested a certain degree of incompatibility of the polypyrrole in the composites.

  • PDF