• Title/Summary/Keyword: Degree of polymerization

Search Result 397, Processing Time 0.022 seconds

Studies of Purifying Waste Cotton for Esterification & Molecular Weight Distribution Curve of Cellulose Acetate (落綿의 精製 및 이를 原料로 하는 醋酸纖維素의 分子量 分配曲線에 關한 硏究)

  • Kim, Dong-Il;Noh, Ick-Sam
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 1957
  • Purified cellulosic materials suitable for the production of cellulose esters can be prepared from waste cotton (carding waste from textile mill). The most desirable conditions in purifying waste cotton were obtained. Waxy materials were removed by boiling in 2-3% soda ash solution for more than 30 minutes in open vessel at atmospheric pressure. As for bleaching, it is desirable to use the bleaching powder solution containing 1%, available chlorine for 60 minutes at 35 deg. C. Purified cellulosic material was acetylated to fibrous cellulose triacetate, which was fractionated in the solution of 70% monochloroacetic acid using water as a precipitant, and the degree of polymerizaion and molecular weight of each fraction were measured viscometrically, thereon, molecular weight distribution curve was drawn. Analyzing the shape of this curve, most of the polymers were concentrated on the part of higher degree of polymerization. Purified waste cotton was also analysed, the result was that this cellulosic material can be used as a raw material for cellulose esters and ethers.

  • PDF

Alkali Hydrolysis of Insoluble Sericin (불용성 세리신의 알칼리 가수분해)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • When insoluble sericin was hydrolyzed by treatment of NaOH solution, the solubility was increased with higher treatment temperature and longer treatment time. Whereas it was decreased in addition of NaHSO$_3$. As the results of electrophoresis in sericin powder obtained by the NaOH treatment, a distinguishable band was not confirmed. Average degree of polymerizations(A.D.P.) of sericin hydrolyzed by NaOH solutions were about 19.6∼22.1 and average molecular weight(M.W.) were about 2,200∼2,500. The longer hydrolysis time increased the whiteness of sericin powder. As the results of amino acid analysis, the contents of Thr., Tyr., and Ser. were decreased in NaOH hydrolysis as compared to HCl hydrolysis. In DSC analysis, thermal deformation and pyrolysis peak located at near 230$\^{C}$ and 320$\^{C}$, respectively.

  • PDF

Structural and physicochemical properties of starch by barley cultivars

  • Kim, Hyun-Joo;Woo, Koan Sik;Lee, Jihae;Lee, Byong Won;Lee, Yu-Young;Jeon, Yong Hee;Lee, Byoungkyu
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.779-787
    • /
    • 2018
  • The objective of this study was to investigate the structural and physicochemical properties of starch by barely cultivars. Hwanggeumchal had a moisture content and ${\beta}$-glucan content of 12.02 and 6.23%, respectively. Hyegang had higher protein contents than those of the other cultivars. As a result of observing the particle size of starch, Hwanggeumchal and Hyegang had smaller particles of starch compared with the other cultivars at 15.7 and $15.9{\mu}m$, respectively. The analysis results on the content of damaged starch showed that Dahan and Hyegang had a damaged starch content of 1.14 and 1.20%, whereas Boseokchal and Hwanggeumchal were 0.76 and 0.49% respectively, showing low waxy cultivars. As for the content of amylose, the results show that Dahan and Hyegang had an amylose content of 37.07 and 37.75%, and Boseokchal and Hwanggeumchal were at 11.22 and 37.75%, respectively. As for the degree of amylopectin polymerization, all four cultivars had the highest degree of polymerization (DP) content of 13 - 24 at more than 54%, whereas the DP content ${\geq}37$ was the lowest at less than 5.35%. The results for the soluble and resistant starch content show that the content of soluble starch ranged from 93.90 to 95.76%, and resistant starch was 0.17 - 0.40%. After analyzing the gelatinization properties of barley starch, the value of the setback was low in Hwanggeumchal and Hyegang; thus, it is considered that the aging process of those cultivars will be slower than that of the others.

The Characteristics of Exhumed Cotton Fabrics of the Middle Age of Yi Dynasty (朝鮮中期 出土된 綿織物의 理化學的 特性)

  • Lee, Jeong Sook;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.8-15
    • /
    • 1996
  • Three pieces of cotton fabrics used for this study were exhumed in the Mt.Moo Deung near Kwang Ju in 1965. The fabrics were remains of Jang Heung Lim Si-the nephew's wife of General Kim Deok Ryeong. It was reported that Jang Heung Lim Si died in 1615. The cotton fabrics were classified into three, A, B and C, according to their color. The fabric A was inherent color of cotton, the fabric B was that of light brown and the fabric C was that of dark brown. The physical and chemical characteristics of the cotton fabrics were examined. In the meantime the construction of cotton fabrics and traditional dyeing of Yi dynasty were studied through various records. The results were as follows: 1. According to electromicroscopic examination, the lumen in the cotton fiber had not been developed enough, therefore the quality of cotton at that time was supposed to be not so excellent. 2. The results of chemical analysis indicated that: (1) While the copper number of the cotton fabric A was similar to that of bleached cotton, that of the fabric C was extremely high. (2) The amount of methylene blue absorption was much more than that of normal cotton. (3) The content of cellulose was less than that of normal cotton. (4) The degree of polymerization was less than that of normal cotton. From the results mentioned above, it was concluded that the cotton fabrics were oxidized slowly in the closed lime coffin for a long period of time. From this process of oxidization and deterioration, the degree of polymerization was decreased through depolymerization, and carboxyl groups were produced by the oxidization at reducing end groups. 3. It was confirmed that the cotton fabric C was dyed by the juice of immature persimmon. Thus, it was inferred that the large amount of copper number of cotton fabric C was derived from phenolic OH groups of tannins having high reducing properties in persimmon.

  • PDF

The effects of dentin bonding agent formulas on their polymerization quality, and together with tooth tissues on their microleakage and shear bond strength: an explorative 3-step experiment

  • Erfan, Mohmmad;Jafarzadeh-Kashi, Tahereh Sadat;Ghadiri, Malihe;Rakhshan, Vahid
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.333-345
    • /
    • 2014
  • PURPOSE. Bonding agents (BA) are the crucial weak link of composite restorations. Since the commercial materials' compositions are not disclosed, studies to formulize the optimum ratios of different components are of value. The aim of this study was to find a proper formula of BAs. MATERIALS AND METHODS. This explorative experimental in vitro study was composed of 4 different sets of extensive experiments. A commercial BA and 7 experimental formulas were compared in terms of degree of conversion (5 experimental formulas), shear bond strength, mode of failure, and microleakage (3 experimental formulas). Statistical analyses were performed (${\alpha}$=.05). The DC of selected formula was tested one year later. RESULTS. The two-way ANOVA indicated a significant difference between the shear bond strength (SBS) of two tissues (dentin vs. enamel, P=.0001) in a way that dentinal bonds were weaker. However, there was no difference between the four materials (P=.283). The adhesive mode of failure was predominant in all groups. No differences between the microleakage of the four materials at occlusal (P=.788) or gingival (P=.508) sites were detected (Kruskal-Wallis). The Mann-Whitney U test showed a significant difference between the microleakage of all materials (3 experimental formulas and a commercial material) together at the occlusal site versus the gingival site (P=.041). CONCLUSION. A formula with 62% bisphenol A-glycidyl methacrylate (Bis-GMA), 37% hydroxy ethyl methacrylate (HEMA), 0.3% camphorquinone (CQ), and 0.7% dimethyl-para-toluidine (DMPT) seems a proper formula for mass production. The microleakage and SBS might be respectively higher and lower on dentin compared to enamel.

The Investigation on Thermal Aging Characteristics of Oil-Paper Insulation in Bushing

  • Liao, Rui-jin;Hu, En-de;Yang, Li-jun;Xu, Zuo-ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1114-1123
    • /
    • 2015
  • Bushing is the key link to connect outer and inner insulating systems and also the essential electric accessory in electric power system, especially in the high voltage engineering (AC 1000kV, DC 800kV). This paper presented the experimental research of thermal aging characteristic of oil-paper insulation used in bushing. A thermally accelerated aging experiment at 90℃ was performed. The bushing models containing five layers of paper were sealed into the aging vessels and further aged for 250 days. Then several important parameters associated with the aging were observed and evaluated. The results showed that the degree of polymerization (DP) of papers gradually decreased. The DP values of outermost layer and middle layer fit well into the second-order kinematic model and first-order kinematic model, respectively. Less deterioration speed of the inter-layer paper than outer layer was confirmed by the variation of DP. Hydrolysis was considered as the main cause to this phenomenon. In addition, the logarithm of the furfural concentrations in insulation oil was found to have good linear relationship with DP of papers. Interestingly, when the aging time is about 250 days and DP is 419, the aging process reaches an inflection point at which the DP approaches the leveling off degree of polymerization (LODP) value. Both tanδ and acid number of oils increased, while surface and volume resistivity of papers decreased. The obtained results demonstrated that thermal aging and moisture absorbed in papers brought great influence to the degradation of insulating paper, leading to rapid decrease of DP and increase of the tanδ. Thus, the bushing should be avoided from damp and real-time monitoring to the variation of tanδ and DP values of paper is an effective way to evaluate the insulation status of bushing.

Synthesis of modified polyacrylamides and their applications for the retention system of papermaking (변성 폴리아크릴 아미드의 합성 및 제지공정의 보류시스템에 응용)

  • Son, Dong-Jin;Yoon, Ji-Hyun;Choi, Eun-Jeong;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2009.04a
    • /
    • pp.23-28
    • /
    • 2009
  • The purpose of this study was to improve not only wet-end performances but also paper characteristics by the modification of various factors like molecular design and ionic characteristics of polyacrylamides First of all physical characteristics were observed after modify molecular design of the cationic polyacrylamides to linear, branched and cross-linked. In addition it was found analysis method to confirm branch degree of cationic polyacrylamides to combine ionic titration characteristics and spectroscopic behavior, After application of these structure modified polyacrylamides to the multiple retention systems with inorganic microparticles, it was found adjusting of branch degree of polyacrylamides was very important to optimize wet-end improvement. Second, After polymerization of amphoteric polyacrylamide to have both of cationic and anionic functional group in the polymer, we observed not only physical characteristics but also wet-end improvement to apply recycled pulp and found that the improvement of solution stability to prevent hydrolysis and increase of ash retention dramatically to compare traditional cationic polyacrylamide retention aid, Finally, After polymerization of anionic polyacrylamide, we observed not only wet-end improvement but also paper characteristics to apply preflocculation of PCC and it was found the improvements of flocculation efficiency, retention, ash retention, optical properties of the paper and bursting strength to compare traditional preflocculant of cationic polyacrylamide.

  • PDF

Comparisons of Physical Properties of Bacterial Celluloses Produced in Different Culture Conditions Using Saccharified Food Wastes

  • Moon Seung-Hyeon;Park Ji-Min;Chun Hwa-Youn;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • The saccharogenic liquid (SFW) obtained by the enzymatic saccharification of food wastes was used as a medium for production of bacterial cellulose (BC). The enzymatic saccharification of food wastes was carried out by the cultivation supernatant of Trichoderma harziaum FJ1 culture. Acetobacter xylinum KJ1 was employed for the BC production culture. The physical properties, such as polymerization, crystallinity, Young's modulus, and tensile strength, of BCs produced by three culture methods: the static cultures using HS (Hestrin-Schramm) as a reference medium (A) or the SFW medium (B), the shaking culture (C) or the air circulation culture (D) using the SFW medium, were investigated. The degrees of polymerization of BCs produced under the different culture conditions (A-D) showed 11000, 9500, 8500, and 9200, respectively. Young's modulus was 4.15, 5.0, 4.0, and 4.6 GPa, respectively. Tensile strength was 124, 200, 80, and 184 MPa, respectively. All of the BC had a form of cellulose I representing pure cellulose. In the case of the shaking culture, the degree of crystallinity was 51.2%, the lowest degree. Under the other culturing conditions, the trend should remain in the range of 89.7-84%. Overall, the physical properties of BC produced from SFW were similar to those of BC from HS medium, a commercial complex medium, and BC production by the air circulation culture mode brought more favorable results in terms of the physical properties and its ease of scale-up. Therefore, it is expected that a new BC production method, like air circulation culture using SFW, would contribute greatly to BC-related manufacturing.

Preparation of Oligosaccharides from Alginic Acid by Enzymic Hydrolysis (효소분해에 의한 알긴산 올리고당류의 제조)

  • Joo, Dong-Sik;Lee, Jung-Suck;Park, Jung-Je;Cho, Soon-Yeong;Kim, Hee-Kyung;Lee, Eung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.146-151
    • /
    • 1996
  • For the purpose of production of oligosaccharides from alginates, a bacterium was isolated from seaweed, and then an enzyme which degraded alginates was obtained from the bacterium. A specific activity of the enzyme was shown in G-rich block and Na-alginate (Wako Co.) as a result of reaction between the enzyme and six types of alginates (G-rich block, M-rich block and 4 commercial Na-alginate). Degradation products were prepared from the Na-alginate (Wako Co.) by the enzyme. The oligosaccharides were fractioned by Sephadex G-25 and Bio-gel P-2 and identified on a thin layer chromatography (TLC). Degree of polymerization (DP) of the oligosaccharides was shown from 2.6 to 7.5.

  • PDF

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF