• Title/Summary/Keyword: Degree of Oxidation

Search Result 303, Processing Time 0.029 seconds

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

Oxidative Pathway of $C^{14}-glucose$ in Various Human Cancer Tissues (각종 인체 암조직의 당의 산화경로 분석)

  • Lee, Bong-Kee;Lee, Sang-Don
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 1968
  • Tissue homogenates of 12 kinds of human cancer tissues were incubated separately in medium containing $C^{14}-1-glucose$ and $C^{14}-6-glucose$ as a substrate in order to observe the oxidative pathway of glucose in the tumor tissues. At the end of 3 hours incubation in the Dubnuff metabolic shaking incubator, respiratory $CO_2$ samples trapped by alkaling which was placed in the center well of incubation flask were analysed for total $CO_2$ production rates and their radioactivities. The tissue homogenate samples after incubation were analyzed for their concentrations of glucose, lactate and pyruvate. Calculations were made on the glucose consumption rate and accumulation rates of lactate and pyruvate. Fractionation of oxidative pathway of glucose was carried out by calculating $C^{14}O_2 yields from C-1 and C-6 carbon of glucose. The following results were obtained. 1. In 12 kinds of human cancer, total $CO_2$ production rates were less than $8{\mu}M/gm$ except 2 cases. These lower values impressed that oxidative metabolism in the tumor tissues generally inhibited as compared with that in normal tissues. On the other hand, fractions of $CO_2$ derived from glucose to total $CO_2$ production rates (RSA) were less than 10% in every case. These facts showed that oxidation of glucose into $CO_2$ was remarkably inhibited in the tumor tissues. 2. Factions of glucose disappeared into $CO_2\;(RGD_{CO_2})$, lactate $(RGD_L)$, pyruvate $(RGD_P)$ to glucose consumption rates were as follows. $RGD_{CO_2}$ were less than 2% in cases of in this experiment and $RGD_L$ showed more than 5% except in 2 cases. These facts showed that anaerobic degradation of glucose into 3 carbon compounds was easily proceeded but further degradation into $CO_2$ via the TCA cycle was greatly inhibited resulting in accumulation of lactate. There are large variation in values of $RGD_P$ in different kinds of tumor tissue but relatively higher values in $RGD_{CO_2}$ were obtained in the tumor tissues as compared with those of normal tissues. 3. The oxidative pathway of glucose in tumor tissues were analyzed from the values of RSA which were obtained in $C^{14}-1\;and\;C^{14}-6-glucose$ incubation experiments. It was found that 3% of $CO_2$ derived from glucose were oxidized via the principal EMP-TCA cycle and the remainder were via alternate pathway such as HMP in the liver cancer and values in other cancer tissues were as follows; 4% in the tongue cancer, 6% in the colon cancer, 6% in the lung cancer, 9% in the stomach cancer, 11% in the ovarian cancer, 12% in the neck tumor, 22% in the uterine cancer, 22% in the bladder tumor, 32% in the spindle cell sarcoma and 65% in the brain tumor. These values except later 2 cases showed less than 30% which is the lowest value among the normal tissues. Even in the brain tumor in which showed highest value in the tumor group. It is reasonable to suppose that this fraction was remarkably decreased because values in normal brain tissue was more than 90%. From the above data, it was concluded that in tumor tissues, oxidation of glucose via TCA cycle was greatly inhibited but correlation between degree of inhibited oxidation of glucose via TCA cycle and malignancy of tumor were not clarified in this experiments.

  • PDF

Characteristics of Methanol Production Derived from Methane Oxidation by Inhibiting Methanol Dehydrogenase (메탄올탈수소효소 저해시 메탄산화에 의한 메탄올 전환생성 특성)

  • Yoo, Yeon-Sun;Han, Ji-Sun;Ahn, Chang-Min;Min, Dong-Hee;Mo, Woo-Jong;Yoon, Soon-Uk;Lee, Jong-Gyu;Lee, Jong-Yeon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.662-669
    • /
    • 2011
  • This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, $NH_4Cl$, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at $35^{\circ}C$ and pH 7 under 0.4 (v/v%) of biogas ($CH_4$ 50%, $CO_2$ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of $NH_4Cl$ and $150{\mu}m$ of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of $NH_4Cl$ and $50{\mu}m$ of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was $7.4{\mu}mol/mg{\cdot}h$. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.

Catalytic Wet Air Oxidation by TiO2 Supported Mn-Ce Based Catalysts (Mn-Ce계/TiO2 촉매에 의한 아세트산의 습식산화 반응특성)

  • Park, K.S.;Park, J.W.;Kim, Y.J.;Yoon, W.L.;Park, J.S.;Rhee, Y.W.;Kang, Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2263-2273
    • /
    • 2000
  • Catalytic wet air oxidation of acetic acid over Mn-Ce based catalysts deposited on various supports ($SiO_2$, $TiO_2$, $ZrO_2$), $ZrSiO_4$, $ZrO_2(10wt%)/TiO_2$) have been carried out in high pressure microreactors. Also, promotional effects by small addition(O.5~1.0 wt%) of p-type semiconductors (CoO, $Ag_2O$, SnO) have been investigated. From the screening tests for initial activity ranking, both Mn(2.8)-Ce(7.2 wt%) and Ru(O.4)Mn(2.7)-Ce(6.9 wt%) supported on $TiO_2$ were selected as the promising reference candidates. In $Mn-Ce/TiO_2$ reference catalyst, addition of small amount of each p-type semiconductor (Co, Sn and Ag) resulted in activity promotional effect and the degree of the increase was in the following order: Co> Ag > Sn. Especially, $Mn-Ce/TiO_2$ promoted with 0.5 wt% Co gave the 2.6 folds activity increase compared to the reference case attributing to the surface area increase as well as synergy effect. In $Ru-Mn-Ce/TiO_2$ reference catalyst, only Co(1.0 wt%) promoted case showed a little reaction rate increase.

  • PDF

Distribution of Trypsin Indigestible Substrate (TI) in Seafoods and Its Changes during Processing 2. Changes in TI and In Vitro Apparent Digestibility of Boiled and Dried Anchovy during Processing and Storage (어패류의 Trypsin활성 저해물질의 분포와 가공중의 변화 2. 자건멸치 가공저장중의 Trypsin활성 저해물질과 In Vitro Apparent Digestibility의 변화)

  • LEE Kang-Ho;JO Jin-Ho;RYU Hong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 1984
  • In order to study the optimal conditions of processing and storage for boiled and dried anchovy (Engraulis japonica) with high protein digestibility, the contents of trypsin indigestible substrate (TI) and in vitro apparent protein digestibility were determined. Peroxide value (PoV), TBA number and nonenzymatic brown pigments, that accounted for important antinutritional factors, were also measured and confirmed the relationship between those factors and formation of TI or in vitro protein apparent digestibility. The results were as follows; Samples boiled for 5 minutes showed the lower content of TI than the other samples boiled for 0.5 min. or 1 min. Hot air dried products had a lower TI content in comparison with the other dried ones such as sun dried or freeze dried products. It was revealed that the lower temperature ($8{\pm}1^{\circ}C$) did not affect to a great degree of forming TI and falling in vitro digestibility comparing to high temperature ($26{\pm}1^{\circ}C$) during storage. The lowest TI content (0.173 mg/g solid) was noted in the samples for 5 minutes and then sun drying after 56 days storage at $9{\pm}1^{\circ}C$. A rapid decrease of in vitro protein digestibility occurred within 0.5 min. of boiling and showed the value $85.3\%$. Freeze dried samples possessed the highest in vitro protein digestibility ($85.9\%$), when compared to sun dried or hot air dried products. Fat oxidation and nonenzymatic browning were proceeded with the various boiling times, drying methods and storing temperatures. It was noted that boiling for 5 minutes and freeze drying accelerate the fat oxidation significantly. More nonenzymatic brown pigments was developed in samples boiled for shorter time (0.5 min.) and that stored at high temperature ($26{\pm}1^{\circ}C$) than the other products. Therefore, fat oxidation and nonenzymatic browning assumed to be a major inhibitory reaction in enzyme digestion and those might be an important role in forming TI in boiled and dried anchovy products during processing and storage.

  • PDF

Changes of acid value of lipid, chlorogenic acid content and anti-oxidative activities in roasted coffee for short term storage (단기저장 기간 중 커피원두의 지방산가, chlorogenic acid 및 항산화 활성 변화)

  • Lim, Jinkyu;Kim, Min-Yeol;Kim, Sung-Hee;Ma, Jin-Sung;Oh, Jisun;Kim, Jong Sang
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • Regarding the facts that fat, which is easily oxidized, is one of the major responsible factors affecting the quality of aroma, and polyphenol compounds including chlorogenic acid (CGA) contribute the anti-oxidative activities to coffee, we investigated fat oxidation, conversion of CGA, and changes of anti-oxidative activities according to the degree of roasting and storage of 60 days. We found that the amount of extractable fat by diethyl ether is increased as the coffee beans are roasted longer. Furthermore, the acidity values of the fat are increased from $8.91{\pm}0.16$ to $17.81{\pm}0.11$, and $10.37{\pm}0.27$ to $17.93{\pm}0.09$ in the medium and dark roasted coffee beans, respectively, while it is increased from $4.47{\pm}0.11$ to $11.89{\pm}0.18$ in the green coffee bean after 60 days. The CGA contents in the coffee beans were decreased from $310{\pm}8.2$ to $282{\pm}11.2$, then to $58{\pm}0.0mg$ in 10 gr of the green, medium and dark beans, respectively, and were not changed significantly during the storage period. However, the anti-oxidative activities measured by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical scavenging assays were not significantly different among the green, medium, and dark coffee beans during the storage period. Furthermore, antioxidant reactive element-luciferase assay showed that biological anti-oxidative activities were increased as coffee beans were more roasted and stored longer. As the total polyphenolic contents in the beans were significantly decreased by roasting, the results suggests that other molecules, such as, Maillard reaction products might play substantial role in anti-oxidative activity and influence cup quality of coffee.

Nonthermal Plasma-assisted Diesel Reforming and Injection of the Reformed Gas into a Diesel Engine for Clean Combustion (디젤의 청정연소를 위한 저온 플라즈마 연료개질 및 개질가스의 디젤엔진 첨가에 관한 연구)

  • Kim, Seong-Soo;Chung, Soo-Hyun;Kim, Jin-Gul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.394-401
    • /
    • 2005
  • A nonthermal plasma-assisted fuel reformer was developed and the effects of operating variables on the performance of this reformer were studied. The $H_2$-rich reformed gas from the reformer was injected into a diesel engine under an idle condition and the effects of the amount of injected gas on the NO and soot reduction were investigated. It was found that with increasing electric power consumption, the degree of facility of ignition of the reforming reaction in the reformer could be enhanced. The performance of the reformer including $H_2$ concentration, $H_2$ recovery, and energy conversion was affected only by the O/C mole ratio. This was because the equilibrium reaction temperature was governed by the O/C mole ratio. With increasing O/C mole ratio, the $H_2$ recovery and energy conversion passed through the maximum values of 33.4% and 66%, respectively, at an O/C mole ratio between 1.2 and 1.5. The reason why the $H_2$ recovery and energy conversion increased with increasing O/C mole ratio when the O/C mole ratio was lower than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction occurred more enough with increasing O/C mole ratio in this low O/C mole ratio range and accordingly the reaction temperature increased. Whereas the reason why the $H_2$ recovery and energy conversion decreased with increasing O/C mole ratio when the O/C mole ratio was higher than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction was further advanced and the $H_2$ recovery and energy conversion decreased. As the weight ratio of reformed diesel to total diesel which entered the diesel engine was increased to $18.2{\sim}23.5%$, NO and soot reduction efficiencies increased and reached as values high as 68.5% and 23.5%, respectively.

Oxidized LDL is a Chemoattractant for the Eosinophils and Neutrophils (산화 저비중 리포 단백이 호산구와 호중구에 대한 화학주성)

  • Hwang, Young-Sil;Lee, Jong-Deog;Busse, William B.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.3
    • /
    • pp.211-223
    • /
    • 2001
  • Background : Rhinovirus infection of the airways results in increased permeability of the airway vascular endothelium with the influx of plasma proteins, including lipids such as LDL. In vitro studies on the effect of oxLDL on leukocytes has shown many pro inflammatory effects on multiple leukocytes. We hypothesized that oxLDL is one mechanism for recruiting granulocytes to the airways during a RV infection. Therefore, chemotaxis and transendothelial migration, in response to nLDL, was determined for these granulocytes. Methods : nLDL was oxidized with 5mM Cu2S04 for 20-24 hours. 3-5 105 cells were loaded into the Transwell filter while the chemotatic agonists were placed in the lower well for chemotaxis. Confluent monolayers on HPMEC were grown on Transwell filters for transendothelial migration. The filters were washed and eosinophils and neutrophils loaded on to the filter with the chemotatic agonist was were placed in the lower well. The wells were incubated for 3 hours. The number of migrating cells was counted on a hemocytometer. Results : OxLDL, but not nLDL, is chemotatic for eosinophils and neutrophils. The level of granulocytes chemotaxis was dependent on both the concentration of LDL and its degree of oxidation. OxLDL stimulates eosinophil and neutrophils migration across HPMEC monolayers (+/-IL-$1{\beta}$ preactivation) in a dose dependent manner. Conclusion : Increased vascular permeability during a RV infection may lead to the influx and oxidation of LDL. The resulting oxLDL. is one possible mechanism for the recruitment of neutrophils and eosinophils to the airway interstitial matrix. Once in the airways, granulocytes can further interact with oxLDL to promote airway inflammation.

  • PDF

MANAGEMENT OF ORAL MUCOSITIS OWING TO CHEMICAL BURN BY INTOXICATION OF AGRICULTURAL CHEMICALS(GRAMOXON) : REPORT OF CASES (농약(Gramoxon)중독에 의한 화상으로 발생된 구강점막염 치험)

  • Yoo, Jae-Ha;Kang, Sang-Hoon;Kim, Hyun-Sil;Baek, Sang-Hum;You, Tae-Min;Lee, Ji-Woong;Chung, Won-Gyun;Kim, Jong-Bae
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.2
    • /
    • pp.123-127
    • /
    • 2003
  • Chemical burns onto oral mucosa which are infrequent, may result from contact with a wide variety of chemical agents. The degree of injury depends on the chemical, its concentration, duration of contact, and the natural penetrability and resistance of the tissues involved. Chemicals do not usually "burn" in that they do not cause destruction by hyperthermic activity. Rather, they damage tissue by causing coagulation of protein by one of several processes, reduction, oxidation, desiccation, corrosion, or vesication. Paraquat(Gramoxon) is the most frequently agricultural chemicals that induce the severe toxic reactions onto the organs of human body in Korea. The toxic reaction are composed of pulmonary edema and fibrosis, formation of hyaline membrane, inflammatory reaction and bleeding tendency, owing to the cell damage by the production of superoxide radicals. The contents of essential treatment in paraquat intoxication are commonly airway and breathing maintenance, gastric lavage, much hydration and diuresis, hemoperfusion and medications for the removal of the chemicals and the prevention of various complications. The sedative oral dressings, such as, orabase ointment application, warm saline gargling, lidocaine viscous gargling and oral gargling by the mixed solutions(tetracycline, prednisolone and 10% dextrose water) are important for the improvement of chemical oral mucositis and the comfortable feeding of diet. The authors managed properly two cases of oral chemical mucositis that were occurred by the incorrect use of agricultural chemicals(paraquat) and report the cases with the review of literatures about care of the chemical intoxication and oral mucositis.

Neuronal injury in AIDS dementia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species

  • Lipton, Stuart A.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.19-29
    • /
    • 1996
  • The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the vitus\ulcorner In vitro experiments from several different laboratiories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO - and O$_2$), glutamate, quinolinate, cysteine, cytokines (TNF-${\alpha}$, IL1-B, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for newonal suscepubility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca$\^$2+/ leading to neuronal damage, and thus offers hope for future pharmacological intervention. This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin; (ⅰ) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (piysiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function. (ⅱ) Niuoglycerin acts at a redox modulatory site of the NMDA receptor/complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by n chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of chinical value. To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cysteine residues on the NMDARI subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because <1 mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

  • PDF