• Title/Summary/Keyword: Degree of Oxidation

Search Result 304, Processing Time 0.021 seconds

Oxidation of Primary Alcohol Groups of Polysaccharides with 2,2,6,6-Tetramethyl-1-Piperidine Oxoammonium Ion (2,2,6,6-Tetramethyl-1-Piperidine Oxoammonium Ion에 의한 다당류내 1차 알코올의 특이적 산화)

  • Chang, Pahn-Shick;Cho, Gye-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.446-451
    • /
    • 1997
  • The primary alcohol groups of four kinds of polysaccharides (com starch, rice starch, sweet potato starch, and cellulose), with different structures and water solubilities, were oxidized to carboxyl groups using 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion (TEMPO) at $25^{\circ}C$. The optimum pH, TEMPO content, and NaBr content for the TEMPO/hypobromite-catalyzed oxidation of the polysaccharides were $10.5{\sim}11.0$, 10 mmol/mol primary alcohol, and 0.49 mmol/mol primary alcohol, respectively. The oxidation degree for the primary alcohol group was more than 90% for all four kinds of the polysaccharides. The oxidation process greatly increased the water solubility of the polysaccharides. Water-insoluble polysaccharide such as cellulose became water-soluble to the extent of 8.42% (w/v). And also, the polysaccharides with very low water solubility (less than 0.10% (w/v)) such as com starch, rice starch, and sweet potato starch had high water solubility of approximately 45%(w/v). The gel-forming abilities with calcium ion were determined. The oxidized polysaccharides are new anionic polymers with unique structures that could have application as gums, gels, and films.

  • PDF

Effect of Low-temperature Thermal Treatment on Degree of Crystallinity of a Low Density Polyethylene: $^{1}H$ Nuclear Magnetic Resonance Study (저밀도 폴리에틸렌의 결정화도에 대한 저온 열처리 효과: 수소 핵자기공명 연구)

  • Lee, Chang-Hoon;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.259-263
    • /
    • 2008
  • An effect of low-temperature long-term thermal degradation on a degree of crystallinity of a low density polyethylene (LDPE) was investigated by using $^1H$ solid state nuclear magnetic resonance (SSNMR). Firstly, the long-term thermal treatment makes a color of LDPE from white to pale yellow which is indicative of thermal oxidation. Secondly, it makes the $^{1}H$ NMR spin-spin and spin-lattice relaxation times ($T_1$) to be long. Lastly, the degree of crystallinity of the semicrystalline aged-LDPE also decreases with thermal treatment. Above all, the $T_1$ increase is envisaged to be due to either a decrease of the amorphous regions governing overall spin-lattice relaxation mechanism in LDPEs or a dynamically restricted motion of specific molecular motions by intermolecular hydrogen bonding or crosslinking. However, since the decrease of crystallinity implies an increase of amorphous regions by the thermal treatment, the former case is contrast to our results. Accordingly, we concluded that the latter effect is responsible for the $T_1$ increase.

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

Studies on the Surface Color and Tensile Property of Hair according to Bleaching Treatment (모발(毛髮)의 탈색정도(脫色程度)에 따른 인장특성(引長特性)과 표면색 변화 연구(表面色 變化 硏究))

  • Kim, Kyung-Sun;Jeon, Dong-Won;Ha, Byung-Jo
    • Journal of Fashion Business
    • /
    • v.10 no.1
    • /
    • pp.94-105
    • /
    • 2006
  • Hair bleaching is a treatment process in which the melanic pigment is oxidized by hydrogen peroxide. With the increase of the number of treatments, $1{\sim}10$ levels of various colors develop, the hair luster diminishes, and the appearance becomes very rough. In this study, by changing the number of hair bleaching and bleaching conditions, the changes in the degree of hair damage and its process were observed through the use of scanning electron microscopy. The color changes were also compared through the use of spectrophotometer. In order to study the physical changes of the bleached hairs and to search for the optimum conditions to keep the hair damages minimum during bleaching, tensile properties were measured and reviewed. By increasing the number of hair bleaching and by the severe conditions, the scales became eroded and the protection layers were decreased, and the oxidation reached the inner sectors resulting in rough surface and fibrillation. The surface of the hairs became bright yellowish and transparent by the bleaching of melanic pigments or by the destruction of pigments. With the increase of bleaching degree, in terms of physical changes, the breaking strength decreased while the elongation increased a little.

Corrosion Damage Characteristics of Inconel 600 with Reduction Conditions in Chemical Decontamination Process (화학제염공정에서 환원공정조건에 따른 Inconel 600의 부식손상 특성)

  • Han, Min-Su;Jung, Kwang-Hu;Yang, Ye-Jin;Park, IL-Cho;Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.332-338
    • /
    • 2017
  • In this study, we evaluated tendency and degree of corrosion damages of Inconel 600 after chemical decontamination treatments under three different conditions. In the decontamination processes, the oxidation and reduction were performed as one cycle. Each process was continued up to 5 cycles. Characteristics of corrosion under decontamination processes were evaluated by Tafel analysis and weight loss. Characteristics of surface damage were observed by scanning electron microscope(SEM) and three-dimensional(3D) microscope. As the cycle proceeded, weight loss and corrosion current density increased. Intergranular corrosion damage occurred on the surface of the materials. The result revealed that the surface of Inconel 600 was attacked by the strong acid solution under all chemical decontamination processes, but the degree of the corrosion damage was different depending on the processes.

Decomposition of Organic Matters by Ozonation in Advanced Water Treatment Process (고도정수처리공정에서 오존의 유기물 분해능)

  • Yoon Taekyung;Lee Gangchoon;Noh Byeongjil
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.327-333
    • /
    • 2005
  • The performance of ozone contactor in ozone-BAC advanced water treatment process was evaluated by the degree of decomposition of organic matters. The degree was measured by the analyses of $UV_{254}$ absorbance and the concentrations of DOC and BDOC for the sand filtered water and the ozone treated water, respectively. In addition, the ozone concentration in the contactor, required for the maximum BDOC concentration, was selected as the optimum concentration, and the appropriate residential time of ozone treated water in a reservoir was recommended based on the residual ozone concentration in the treated water. The following results were obtained from the pilot scale experiments. By ozonation $UV_{254}$ absorbance was decreased, and BDOC concentration was increased. The change of DOC concentration by ozonation was negligible, but the excess input of ozone resulted in the removal of the small amount of BDOC by complete oxidation. The optimum ozone concentration was 0.58mg $O_3/mg$ DOC. In order to remove residual ozone, 20minutes of the residential time were enough after ozonation.

Characteristics of odorous VOCs removal by using electrolytic oxidant (전해 산화제에 의한 악취 원인 VOCs 제거 특성)

  • Lee, Tae Ho;Ryu, Hee Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite ($OCl^-$) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.

Afterpolymerization and Depolymerization of Poly-${\varepsilon}$-caproamide in Solid State (고체상태에서 Poly-${\varepsilon}$-caproamide의 후중합 및 해중합에 관한 연구)

  • Jung-Ji Moon;Dong-ho Lee;Tae-oan Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.450-454
    • /
    • 1973
  • The afterpolymerization and depolymerization of poly-${\varepsilon}$-caproamide in solid state have been studied under two different reaction conditions, nitrogen flow and sealed state. The degree of polymerization ($\bar{P}$) of nylon 6 increased with the increase in reaction time and temperature, and then reacted finally an equilibrium. In the presence of oxygen, $\bar{P}$ decreased by increasing the reaction time due to the oxidation reaction. Under certain reaction condition, the change of $\bar{P}$ for different initial degree of polymerization ($\bar{P}_0$) tendered toward unity in equilibrium.

  • PDF

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

A study on surface modification of Ag powder for developing latent fingerprints (잠재지문 현출용 나노 은 분말의 표면개질에 대한 연구)

  • Kim, Man-Ki;Choi, Mi-Jung;Jeon, Chung-Hyun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.216-223
    • /
    • 2010
  • In previous research, results on efficiency versus size and type of Ag particles showed similarity of detection efficiency comparing the particles of flake and spherical type with the gray particle on the market and in the case of nAg (rod, $0.9\;{\mu}m$) particle, relatively good results was given in the various evaluation methods for detection efficiency of latent fingerprint. However, oxidation was occurred when nAg particles laying on nature condition for a month and due to water absorption, detection efficiency was decreased. Therefore, with need to prevent oxidation and water absorption, more research is necessary. In this research, surface modification on nAg particles using silicon oil was conducted in various methods for complementing weakness of oxidation and water absorption. Then detection efficiency of nAg particles and surface modified nAg particles was evaluated by the number of feature points on the surface of non-porous materials (glass, plastic etc.) and degree of particle adhesion with ridges and contrast of detected fingerprint. Improvement of preventing oxidation and water absorbtion was given by surface modification using silicon oil (DC200, 0.5%) on the surface of non-porous materials.