• 제목/요약/키워드: Degradation of penicillin

검색결과 7건 처리시간 0.021초

Penicillin G Potassium 주사액 조제 후 보관방법에 따른 안정성 (The Stability of Penicillin G Potassium Injection after Reconstitution in Various Storage Conditions)

  • 장명순;신현택;서옥경;이숙향
    • 한국임상약학회지
    • /
    • 제9권1호
    • /
    • pp.71-76
    • /
    • 1999
  • The stability of penicillin G potassium injection after reconstitution was evaluated in two different diluents of sodium chloride $0.9\%$ and dextrose $5\%$ in water stored at room temperature or refrigerated condition. The concentrations of penicillin G, stored for 24 hours at room temperature or for 10 days at refrigerated condition, were determined by HPLC. Also the pHs of the reconstituted solutions were monitored. The concentrations and pHs of penicillin G potassium 500,000 U/ml injection after reconstitution gradually decreased in all conditions. Stored at room temperature after reconstitution, a new peak which suspected as degradation products of penicillin G was detected in 5 hours in sodium chloride $0.9\%$, 4 hours in dextrose $5\%$ in water. At refrigerated condition, the new peak was detected in 4 days in both sodium chloride $0.9\%$ and dextrose $5\%$ in water. The degradation products of penicillin G allergy have been thought to be one of the substances responsible for evoking allergic reactions. In conclusion, the penicillin G potassium 500,000 U/ml injection after reconstitution was stable for 4 hours in sodium chloride $0.9\%$ 3 hours in dextrose $5\%$ in water solution at room temperature. At refrigerated condition, both solutions were stable for 3 days after reconstitution.

  • PDF

Degradation of Clavulanic Acid During the Cultivation of Streptomyces clavuligerus; Instability of Clavulanic Acid by Metabolites and Proteins from the Strain

  • Ishida Kenji;Hung Trinh Viet;Lee Hei-Chan;Liou Kwang-Kyoung;Shin Chang-Hun;Yoon Yeo-Joon;Sohng Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.590-596
    • /
    • 2006
  • Clavulanic acid (CA) produced by Streptomyces clavuligerus is degraded during the bacterial cultivation. The degradation was examined in three different aspects, including physical, chemical, and enzymatic effects, in order to understand the degradation during the cultivation. The result showed that CA was unstable in the production medium containing ammonium salts and amino acids, owing to ammonium ions and amine groups. In addition, the degradation was not only due to instability of CA by metabolites and proteins, but also enzymes from S. clavuligerus such as $\beta-lactamase$ and penicillin-binding proteins. However, the degradation caused by these enzymes was not highly significant compared with the degradation during the cultivation, owing to irreversible reactions between CA and enzymes.

Studies on the Design and Synthesis of New Monocyclic β-Lactams Containing Substructures of Penicillin G

  • Lee, Sang Hyup
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2990-2994
    • /
    • 2014
  • The studies on design and synthesis of new monocyclic ${\beta}$-lactam esters 4(R/S)-(1'-methoxycarbonylpropyl- 2'(R/S)-thio)-3(R)-phenylacetamidoazetidin-2-one (3a) and 4(R/S)-(1'-methoxycarbonyl-2'-methylpropyl-2'- thio)-3(R)-phenylacetamidoazetidin-2-one (3b) were described. Compounds 3a and 3b were specifically designed to retain all penicillin substructures except the bicyclic system, which would be conceived by cleaving the C(3)-N(4) bond of penicillin G. Compounds 3a and 3b are of particular interest in the context of the structural elucidation of monocyclic ${\beta}$-lactams originated from penicillin. Key intermediates, ${\beta}$-mercapto esters 6a and 6b, were synthesized from conjugate acids 4a and 4b using three-step synthetic sequences, respectively, and 4(S)-acetoxy-3(S)-phenylacetamidoazetidin-2-one (7) was obtained from the degradation of penicillin G. Reactions of 6a and 6b with 7, thus obtained, provided the target compounds 3a and 3b, respectively.

Design and Synthesis of New 4-Alkylthio Monocyclic β-Lactams

  • Lee, Sang Hyup
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.121-127
    • /
    • 2013
  • New types of monocyclic ${\beta}$-lactams constitute an important class of compounds due to their unique structures and natures. Here, the design and synthesis of new 4-alkylthio monocyclic ${\beta}$-lactams 2a and 3a are reported. Significantly, compounds 2a and 3a, while keeping a monocyclic system, were designed to contain all of the substructures provided by the cleavage of C(2)-C(3) bond in penicillins. Efficient synthetic pathways for compounds 2a and 3a were established based on two different strategies. Compound 2a was synthesized from raw materials, using 4-acetoxyazetidin-2-one as a key intermediate, through a ten-step synthetic sequence in 3% overall yield. Compound 3a was synthesized from potassium salt of penicillin G (17), using the degraded product 20 as a key intermediate, through a six-step synthetic sequence in 11% overall yield. 4-Alkylthioazetidin-2-one derivatives, introduced in this study, could serve as valuable intermediates for the development of new monocyclic ${\beta}$-lactams.

고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향 (Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment)

  • 루흐엔뜨랑;밍당낫;이기세
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.690-695
    • /
    • 2018
  • 페니실린(PEN) 항생제의 분해를 위하여 오존, 과산화수소, 자외선으로 구성된 고도산화공정(AOP)을 적용하였다. 항생물질 분해효율은 흡광도(ABS) 및 총유기탄소(TOC) 분석으로 평가하였다. $O_3/H_2O_2/UV$$O_3/UV$ 조합이 ABS (9 min 동안 100%) 및 TOC 감소(60 min 동안 70%)에 가장 효과가 좋았으나 사용한 실험조건에서 항생제의 무기질화 및 독성제거는 완전하지 않았다. 항생물질에 의한 생독성은 Escherichia coli 민감도 및 Vibrio fischeri 생체형광 활성평가를 이용하였으며 $O_3/UV$에 의해 민감도는 9 min 동안 100% 감소, $O_3/H_2O_2/UV$에 의한 생체형광에 대한 독성은 60 min 동안 57% 감소하였다. 생물학적 분해를 위한 AOP 조합으로 $O_3/UV$ 조합을 선정하였으며 $BOD_5/COD$ 비율로 생분해도의 개선 여부를 간접 측정한 결과 $O_3/UV$로 30 min 처리함으로 $BOD_5/COD$ 비율이 약 4배 증가하였다. 페니실린 20 mg/L를 포함하는 인공폐수에 대하여 AOP 처리 후 Pseudomonas putida를 이용하여 호기적 생물학적 분해를 진행한 결과, $O_3/UV$ 전처리한 경우 페니실린의 완전 무기질화가 가능하였으며 전처리하지 않은 경우에 비하여 분해속도가 55% 증진되었다. 결론으로, 호기성 생물학적 처리를 위한 AOP 전처리로써 $O_3/UV$ 조합이 추천되며 페니실린의 완전 분해를 촉진할 수 있다.

2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성 (Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium)

  • 한난숙;손홍주;이건;이상준
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

생선 내장으로부터 분리된 프로바이오틱 유산균에 의한 히스타민 생산균의 제어 (Control of histamine-forming bacteria by probiotic lactic acid bacteria isolated from fish intestine)

  • 임은서;이남걸
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.352-364
    • /
    • 2016
  • 본 연구에서는 생선 내장으로부터 분리된 유산균의 프로바이오틱 특성과 아민 산화효소(diamine oxidase, DAO) 및 박테리오신 생산을 통한 히스타민 분해능을 조사하였다. 조기, 가자미, 명태 및 우럭 내장으로부터 분리된 총 97종의 유산균 중에서 CIL08, CIL16, FIL20, FIL31, PIL45, PIL49, PIL52 및 RIL60 균주는 인공 소화액에 대한 저항성이 강하고, HT-29 상피세포에 대해서도 높은 부착력을 보였으며, 항생제(amoxicillin, ampicillin, erythromycin, penicillin G, streptomycin, tetracycline 및 vancomycin)에 대한 내성도 강한 것으로 나타났다. 게다가 이들 균주들은 히스티딘이 함유된 탈카르복시화 액체배지 내에서 히스타민을 생산하지 않았다. 특히 DAO를 생산하는 것으로 추정되는 CIL08, FIL20, PIL52 및 RIL60 등의 4균주는 히스타민 분해능이 유의하게 높았다. FIL20, FIL31 및 PIL52 유산균이 생산한 박테리오신에 의해선 Enterococcus aerogenes CIH05, Serratia marcescens CIH09, Enterococcus faecalis FIH11, Pediococcus halophilus FIH15, Lactobacillus sakei PIH16, Enterococcus faecium PIH19, Leuconostoc mesenteroides RIH25 혹은 Aeromonas hydrophilia RIH28의 증식과 히스타민 생성량이 유의하게 감소되었다. 또한 생선 내장에서 분리된 히스타민 생성균과 히스타민 분해능 혹은 박테리오신 생산능을 가진 CIL08, FIL20, PIL52 및 RIL60 유산균과 혼합 배양에 의해 히스타민 축적량이 감소되었다. 히스타민 생성을 억제하는 프로바이오틱 유산균의 배양학적 특성과 16S rRNA 염기서열 분석을 통해 Pediococcus pentosaceus CIL08, Lactobacillus plantarum FIL20, Lactobacillus paracasei FIL31, Lactobacillus sakei PIL52 및 Leuconostoc mesenteroides RIL60으로 동정되었다.