• Title/Summary/Keyword: Degradation of penicillin

Search Result 7, Processing Time 0.025 seconds

The Stability of Penicillin G Potassium Injection after Reconstitution in Various Storage Conditions (Penicillin G Potassium 주사액 조제 후 보관방법에 따른 안정성)

  • Chang, Myung Soon;Shin, Hyun Taek;Su, Ok Kyung;Lee, Suk Hyang
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The stability of penicillin G potassium injection after reconstitution was evaluated in two different diluents of sodium chloride $0.9\%$ and dextrose $5\%$ in water stored at room temperature or refrigerated condition. The concentrations of penicillin G, stored for 24 hours at room temperature or for 10 days at refrigerated condition, were determined by HPLC. Also the pHs of the reconstituted solutions were monitored. The concentrations and pHs of penicillin G potassium 500,000 U/ml injection after reconstitution gradually decreased in all conditions. Stored at room temperature after reconstitution, a new peak which suspected as degradation products of penicillin G was detected in 5 hours in sodium chloride $0.9\%$, 4 hours in dextrose $5\%$ in water. At refrigerated condition, the new peak was detected in 4 days in both sodium chloride $0.9\%$ and dextrose $5\%$ in water. The degradation products of penicillin G allergy have been thought to be one of the substances responsible for evoking allergic reactions. In conclusion, the penicillin G potassium 500,000 U/ml injection after reconstitution was stable for 4 hours in sodium chloride $0.9\%$ 3 hours in dextrose $5\%$ in water solution at room temperature. At refrigerated condition, both solutions were stable for 3 days after reconstitution.

  • PDF

Degradation of Clavulanic Acid During the Cultivation of Streptomyces clavuligerus; Instability of Clavulanic Acid by Metabolites and Proteins from the Strain

  • Ishida Kenji;Hung Trinh Viet;Lee Hei-Chan;Liou Kwang-Kyoung;Shin Chang-Hun;Yoon Yeo-Joon;Sohng Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.590-596
    • /
    • 2006
  • Clavulanic acid (CA) produced by Streptomyces clavuligerus is degraded during the bacterial cultivation. The degradation was examined in three different aspects, including physical, chemical, and enzymatic effects, in order to understand the degradation during the cultivation. The result showed that CA was unstable in the production medium containing ammonium salts and amino acids, owing to ammonium ions and amine groups. In addition, the degradation was not only due to instability of CA by metabolites and proteins, but also enzymes from S. clavuligerus such as $\beta-lactamase$ and penicillin-binding proteins. However, the degradation caused by these enzymes was not highly significant compared with the degradation during the cultivation, owing to irreversible reactions between CA and enzymes.

Studies on the Design and Synthesis of New Monocyclic β-Lactams Containing Substructures of Penicillin G

  • Lee, Sang Hyup
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2990-2994
    • /
    • 2014
  • The studies on design and synthesis of new monocyclic ${\beta}$-lactam esters 4(R/S)-(1'-methoxycarbonylpropyl- 2'(R/S)-thio)-3(R)-phenylacetamidoazetidin-2-one (3a) and 4(R/S)-(1'-methoxycarbonyl-2'-methylpropyl-2'- thio)-3(R)-phenylacetamidoazetidin-2-one (3b) were described. Compounds 3a and 3b were specifically designed to retain all penicillin substructures except the bicyclic system, which would be conceived by cleaving the C(3)-N(4) bond of penicillin G. Compounds 3a and 3b are of particular interest in the context of the structural elucidation of monocyclic ${\beta}$-lactams originated from penicillin. Key intermediates, ${\beta}$-mercapto esters 6a and 6b, were synthesized from conjugate acids 4a and 4b using three-step synthetic sequences, respectively, and 4(S)-acetoxy-3(S)-phenylacetamidoazetidin-2-one (7) was obtained from the degradation of penicillin G. Reactions of 6a and 6b with 7, thus obtained, provided the target compounds 3a and 3b, respectively.

Design and Synthesis of New 4-Alkylthio Monocyclic β-Lactams

  • Lee, Sang Hyup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • New types of monocyclic ${\beta}$-lactams constitute an important class of compounds due to their unique structures and natures. Here, the design and synthesis of new 4-alkylthio monocyclic ${\beta}$-lactams 2a and 3a are reported. Significantly, compounds 2a and 3a, while keeping a monocyclic system, were designed to contain all of the substructures provided by the cleavage of C(2)-C(3) bond in penicillins. Efficient synthetic pathways for compounds 2a and 3a were established based on two different strategies. Compound 2a was synthesized from raw materials, using 4-acetoxyazetidin-2-one as a key intermediate, through a ten-step synthetic sequence in 3% overall yield. Compound 3a was synthesized from potassium salt of penicillin G (17), using the degraded product 20 as a key intermediate, through a six-step synthetic sequence in 11% overall yield. 4-Alkylthioazetidin-2-one derivatives, introduced in this study, could serve as valuable intermediates for the development of new monocyclic ${\beta}$-lactams.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

Control of histamine-forming bacteria by probiotic lactic acid bacteria isolated from fish intestine (생선 내장으로부터 분리된 프로바이오틱 유산균에 의한 히스타민 생산균의 제어)

  • Lim, Eun-Seo;Lee, Nahm-Gull
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.352-364
    • /
    • 2016
  • In this study, we examined in vitro the potential probiotic properties of lactic acid bacteria (LAB) obtained from the fish intestine and their ability to degrade histamine through the production of diamine oxidase (DAO) enzymes and bacteriocin. Among 97 LAB strains isolated from the intestine of croaker, flatfish, pollack, and rockfish, CIL08, CIL16, FIL20, FIL31, PIL45, PIL49, PIL52, and RIL60 isolates exhibited excellent survival rates under simulated gastrointestinal tract conditions, high adhesion ability to HT-29 epithelial cells, and resistance to the antibiotics such as amoxicillin, ampicillin, erythromycin, penicillin G, streptomycin, tetracycline, or vancomycin. In addition, these strains did not produce histamine in decarboxylating broth containing histidine. In particular, 4 strains (CIL08, FIL20, PIL52, and RIL60) that may produce DAO were significantly able to degrade histamine. The bacteriocins produced by FIL20, FIL31, and PIL52 LAB inhibited the growth and histamine production of Enterococcus aerogenes CIH05, Serratia marcescens CIH09, Enterococcus faecalis FIH11, Pediococcus halophilus FIH15, Lactobacillus sakei PIH16, Enterococcus faecium PIH19, Leuconostoc mesenteroides RIH25, or Aeromonas hydrophilia RIH28. Histamine-producing strains isolated from fish intestine were found to reduce histamine accumulation during co-culture with CIL08, FIL20, PIL52, and RIL60 LAB showing histamine degradation or bacteriocin production ability. The probiotic strains preventing histamine formation were identified as Pediococcus pentosaceus CIL08, Lactobacillus plantarum FIL20, Lactobacillus paracasei FIL31, Lactobacillus sakei PIL52, and Leuconostoc mesenteroides RIL60 with high similarity based on 16S rRNA gene sequencing.