• Title/Summary/Keyword: Degradation durability test

Search Result 120, Processing Time 0.018 seconds

Integrity Estimation of The RC Members Damaged by Corrosion of Main Rebar (철근이 부식된 철근콘크리트 구조물의 건전도 평가기술)

  • Kwon, Dae Hong;Yoo, Suk Hyeong;Noh, Sam Young
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.141-146
    • /
    • 2007
  • It is necessary to guarantee the safety, serviceability and durability of reinforced concrete structures over their service life. However, concrete structures represent a decrease in their durability due to the effects of external environments according to the passage of time, and such degradation in durability can cause structural degradation in materials. In concrete structures, some degradations in durability increase the corrosion of embedded rebars and also decrease the structural performance of materials. Thus, the structural condition assessment of RC materials damaged by corrosion of rebars becomes an important factor that judges needs to apply restoration. In order to detect the damage of reinforced concrete structures, a visual inspection, a nondestructive evaluation method(NDE) and a specific loading test have been employed. However, obscurities for visual inspection and inaccessible members raise difficulty in evaluating structure condition. For these reasons, detection of location and quantification of the damage in structures via structural response have been one of the very important topics in system identification research. The main objective of this project is to develope a methodologies for the damage identification via static responses of the members damaged by durability. Six reinforced concrete beams with variables of corrosion position and corrosion width were fabricated and the damage detections of corroded RC beams were performed by the optimization and the conjugate beam methods using static deflection. In results it is proved that the conjugate beam method could predict the damage of RC members practically.

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF

Development of An Accelerated Durability Test Mode for Fuel Cell (연료전지 가속내구모드 개발)

  • LEE, YONGHEE;OH, DONGJO;JEON, UISIK;LEE, JONGHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.493-498
    • /
    • 2015
  • The fuel cell vehicle is a type of hydrogen vehicle which uses a fuel cell to produce electricity, powering its on-board electric motor. The fuel cell vehicle driving principle is completely different from the internal combustion engine vehicle. In order to ensure the durable quality of the fuel cell vehicle, durability test mode considering the characteristics of the fuel cell must be developed. In this study, we derived the durability test mode profile through collecting and analyzing fuel cell vehicle driving data. Then, the accelerated durability test mode is developed by adding degradation conditions and is experimentally validated to have an acceleration factor of 5~6.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

Effect of Change in Wet/Dry Time of PEMFC Membrane Durability Test Protocol Using Oxygen as Cathode Gas (Cathode 산소 공급조건에서 고분자막 내구평가 프로토콜의 가습/건조 시간 변화의 영향)

  • Lim, Daehyeon;Oh, Sohyeong;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • Since the durability evaluation for improving the durability of PEMFC polymer membranes is very important for the development of PEMFC, research and development of the polymer membrane durability evaluation protocol (AST) continues. Recently, DOE's polymer membrane chemical/mechanical durability evaluation AST was developed and applied to Nafion XL for review. In order to shorten the evaluation time, oxygen was used as a cathode gas instead of air, and it was finished in 144 hours. Since DOE AST has a large number of voltage changes with 45 seconds of humidification and 30 seconds of drying, the degradation of the electrode has more influence on the MEA durability. Therefore, one cycle time was lengthened with 60sec of wet/300sec of dry, and the drying time was made longer than the humidification time to further deteriorate the polymer membrane, and it was finished in 240 hours. It was confirmed that the DOE AST for evaluation of the durability of the polymer membrane was accompanied by electrode degradation.

Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 박막의 화학적 내구성 평가)

  • Sohyeong Oh;Donggeun Yoo;Sunggi Jung;Jihong Jeong;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.362-367
    • /
    • 2023
  • Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five times, so the improvement of the durability of the membranes has become more important. Since the acceleration durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol was applied to a 10 ㎛ thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of 450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.

Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 화학적 내구성 평가시간 단축)

  • Oh, Sohyeong;Cho, Wonjin;Lim, Daehyeon;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.333-338
    • /
    • 2021
  • The durability of the PEMFC stack for large commercial vehicles should be more than 5 times that for passenger vehicles. If the Chemical Accelerated Stress Test (AST) of PEMFC(Proton Exchange Membrane Fuel Cells) membrane for passenger cars is applied as it is for large commercial vehicles, there is a problem that the AST time becomes more than 2,500 hours. In order to shorten the AST time of DOE (Department of Energy), the chemical durability of the polymer membrane was evaluated using oxygen instead of air as a cathode gas. In this study, Nafion XL was used as a polymer membrane to evaluate accelerated durability under OCV, 90?, RH 30%, H2/(air or oxygen) conditions. Among the DOE membrane durability target criteria, the decrease rate of short resistance was the fastest. By using oxygen instead of air, the degradation rate of the polymer membrane was accelerated while being less affected by electrode deterioration, reducing the polymer membrane durability evaluation time to less than half.

Analysis of Maximum Generating Power Drop of PV Module Under the Continuous Artificial Light Irradiation Test Condition (연속 광조사 조건에서의 태양전지모듈의 연간 최대출력 저하율 변화 예측 분석)

  • Kim, Kyungsoo;Yun, Jaeho
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.69-73
    • /
    • 2018
  • PV system is consisted with PV module, inverter and BOS(balance of system). To have robustic operation more than 20 years, the expected and guaranteed durability and reliability of products should be met. Almost components of PV system are qualified through IEC standards at test laboratory. But the qualification certificate of product does not ensure long-term nondefective operation. PV module's expected life time is nowadays more than 20 years and annual maximum power degradation ratio would be less than -1%. But the power degradation ratio is basically based on real data more than several years' record. Developing test method for ensuring annual maximum power degradation ratio is very need because there are many new products every month with new materials. In this paper, we have suggested new test method under continuous artificial light irradiation test condition for analyze expected maximum power drop ratio.

A Study of Bolt Tightening Changing Factor according to Durability Degradation (내구 열화에 따른 샤시계 볼트 체결력 변화 인자 연구)

  • Choi, Dong Young;Choi, Jae Chil;Han, Jong Uk
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • In vehicle development process, durability test should be carried out in field condition. Nowadays there are many customer live there multiple conditions. It makes change of the car's material. Such change causes to lose a bolt. Diversifications of climatic conditions are also a matter of loosening the bolt. To avoid this problem, to identify the cause of the problem, and the solution should be applied. To avoid problems during the durability development test should be measured by the clamping force. Ultrasonic instruments clamping force without affecting the torque can be measured. This instrument is part of the problem by monitoring the clamping force required to obtain objective data.

An Experimental Study on Fatigue Durability for Composite Torque Link of Helicopter Landing Gear (헬리콥터 착륙장치 복합재 토크링크 피로내구성에 대한 실험적 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.26-31
    • /
    • 2010
  • This research work contributes to a study for the procedure and methodology to assess the fatigue durability for a composite torque link for helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the residual strength degradation approach on the basis of material test data. The full scale fatigue test was performed and compared with the analysis results.