• Title/Summary/Keyword: Degradation Period Ratio

Search Result 65, Processing Time 0.021 seconds

Quality of Service Parameters Estimation Model for Adaptive Bandwidth Service in Mobile Cellular Networks (적응형 서비스를 제공하는 이동통신망에서의 서비스 품질 척도 추정 모델)

  • Jung, Sung Hwan;Hong, Jung Wan;Lie, Chang Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.153-163
    • /
    • 2007
  • An adaptive framework paradigm where the bandwidth values of the ongoing calls vary according to the trafficsituations is one of the promising concepts for overcoming poor resource conditions due to handoffs in mobilecellular networks. However, quantifying the level of bandwidth degradation of the ongoing calls in an adaptiveframework is important in view of Quality of Service (QoS) Provisioning. Therefore we introduce new QoSparameters, the Degradation Degree Ratio (DDR), which represents the average portion of the degradationdegree during degradation pehod of a call, and the Degradation Area Ratio (DAR), which represents the averageratio of a call's degradation level considering both the period and the degree of degradation jointly in multi-levelbandwidth service. We also develop a new analytical model for estimating the QoS measures such as theDegradation Pehod Ratio (DPR), DDR and DAR. We show how to calculate the QoS measures and illustrate themethod by numerical examples. The proposed model can be used to determine the optimal parameter of theCAC scheme and analyze the sensitivity ofthe QoS parameters in adaptive networks.

Estimation of Degradation Period Ratio for Adaptive Framework in Mobile Cellular Networks (적응형 구조를 갖는 이동통신망에서 호 저하 시간 비율 추정)

  • Jung, Sung-Hwan;Lee, Sae-Jin;Hong, Jung-Wan;Lee, Chang-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.312-320
    • /
    • 2003
  • Recently there is a growing interest in mobile cellular network providing multimedia service. However, the link bandwidth of mobile cellular network is not sufficient enough to provide satisfactory services to users. To overcome this problem, an adaptive framework has been proposed. In this study, we propose a new method of estimating DPR(Degradation Period Ratio) in an adaptive multimedia network where the bandwidth of ongoing call can be dynamically adjusted during its lifetime. DPR is a QoS(Quality of Service) parameter which represents the ratio of allocated bandwidth below a pre-defined target to the whole service time of a call. We improve estimation method of DPR using DTMC(Discrete Time Markov Chain) model by calculate mean degradation period, degradation probability more precisely than in existing studies. Under Threshold CAC(Call Admission Control) algorithm, we present analytically how to guarantee QoS to users and illustrate the method by numerical examples. The proposed method is expected to be used as one of CAC schemes in guaranteeing predefined QoS level of DPR.

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Estimation of Degradation Period Ratio for Adaptive Framework in Mobile Cellular Networks (이동 통신망에서 적응형 구조의 호 저하 시간 비율 추정)

  • Jeong Seong Hwan;Lee Se Jin;Hong Jeong Wan;Lee Chang Hun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.441-447
    • /
    • 2003
  • Recently there is a growing Interest In mobile cellula r network providing multimedia service. However, the link bandwidth of mobile cellular network is not sufficient enough to provide satisfactory services to use rs. To overcome this problem, an adaptive framework has been proposed in this study, we propose a new method of estimating DPR(degradation period ratio) in an adaptive multimedia network where the bandwidth of ongoing call can be dynamically adjusted during its lifetime. DPR is a QoS(quality of service) parameter which represents the ratio of allocated bandwidth below a pre-defined target to the whole service time of a call. We improve estimation method of DPR using DTMC(discrete time Markov chain) model. We also calculate mean degradation period and degradation probability more precisely than in existing studies. Under Threshold CAC(call admission control) algorithm, we present analytically how to guarantee QoS to users and illustrate the method by numerical examples. The proposed method is expected to be used as one of CAC schemes in guaranteeing predefined QoS level of DPR

  • PDF

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design

  • Imron, Muhammad Fauzul;Titah, Harmin Sulistiyaning
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.374-382
    • /
    • 2018
  • Petroleum hydrocarbons pollutants, such as diesel fuel, have caused ecosystem damage in terrestrial and aquatic habitats. They have been recognized as one of the most hazardous wastes. This study was designed to optimize the effect of Tween 80 concentration, nitrogen (N)/phosphorus (P) ratio and salinity level on diesel biodegradation by Vibrio alginolyticus (V. alginolyticus). Response surface methodology with Box-Behnken design was selected with three factors of Tween 80 concentration (0, 5, 10 mg/L), N/P ratio (5, 10, 15) and salinity level (15‰, 17.5‰, 20‰) as independent variables. The percentage of diesel degradation was a dependent variable for 14 d of the remediation period. The results showed that the percentages of diesel degradation generally increased with an increase in the amount of Tween 80 concentration, N/P ratio and salinity level, respectively. The optimization condition for diesel degradation by V. alginolyticus occurred at 9.33 mg/L of Tween 80, 9.04 of N/P ratio and 19.47‰ of salinity level, respectively, with percentages of diesel degradation at 98.20%. The statistical analyses of the experimental results and model predictions ($R^2=0.9936$) showed the reliability of the regression model and indicated that the addition of biostimulant can enhance the percentage of diesel biodegradation.

Plant Cell-Wall Degradation and Glycanase Activity of the Rumen Anaerobic Fungus Neocallimastix frontalis MCH3 Grown on Various Forages

  • Fujino, Y.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.752-757
    • /
    • 1999
  • Studies were made of digestion of timothy (Pheleum pretense) hay, tall fescue (Festuca elatior) hay, and rice (Oryza sativa) straw in pure cultures of rumen anaerobic fungus, Neocallimastix frontails MCH3. The fungus was inoculated on ground forages (1%, w/v) in an anaerobic medium and incubated at $39^{\circ}C$. Incubation was continued for 24, 48, 72 and 96 h. The losses of dry matter, xylose and glucose of forage during incubation were determined at the end of these incubation periods. Xylose and glucose were considered to be released from xylan and cellulose, respectively. The digested xylan to digested cellulose (X/C) ratios of the substrate were calculated. Xylanase and carboxymethyl cellulose (CMCase) of culture supernatant and residual substrate was measured at the same time. The X/C ratios in the cultures on timothy hay and rice straw were greater than 0.5 in the first 24-h incubation period. The values were smaller than 0.3 in tall fesque. The ratio of xylanase activity to that of CMCase in the first 24-h incubation period correlated well with the traits in X/C ratio. However xylanase activity was still superior to CMCase in the following incubation period (48 to 96 h), although the glucose (designated as cellulose) was more intensively digested than xylose (designated as xylan). The production of these polysaccharidases appeared to correlate with substrate cell-wall sugar composition, xylose to glucose ratios, at the beginning of fast growing period.

Effect of Protective Compounds on the Survival, Electrolyte Leakage, and Lipid Degradation of Freeze-Dried Weissella paramesenteroides LC11 During Storage

  • Yao, Amenan A.;Wathelet, Bernard;Thonart, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.810-817
    • /
    • 2009
  • The effect of cryoprotectants (maltodextrin+glycerol) and cryoprotectants+antioxidant [ascorbic acid and/or butylated hydroxytoluene (BHT)] mixtures on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage was investigated and compared with that of the control (cells without additives) over a 90-day storage period at 4 or $20^{\circ}C$ in glass tubes with water activity ($a_w$) of 0.23. The survival, electrolyte leakage, and lipid degradation were evaluated through colony counts, electrical conductivity, and thiobarbituric acid reactive substances (TBARS) content, respectively. The fatty acids composition was determined by gas chromatography, in both the total lipid extract and the polar lipid fraction, and compared with that of the control after the 90-day storage period. As the storage proceeded, increases in leakage value and TBARS content, as well as a decrease in viability, were observed. After 90 days of storage, the major fatty acids found in both the total lipid extract and the polar lipid fraction were palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids. The survival, leakage value, TBARS content and 18:2/16:0 or 18:3/16:0 ratio were the greatest for the protected strain held at $4^{\circ}C$. Cells with the cryoprotectants+BHT mixture showed the highest percentage of survival and 18:2/16:0 or 18:3/16:0 ratio in both lipid extracts, as well as the lowest leakage value and TBARS content after the 90-day storage period. Drying cells with the cryoprotectants+BHT mixture considerably slowed down polar lipid degradation and loss of membrane integrity, resulting in improved viability during storage.

Biodegradation Enhancement of The Mixture of Kerosene and Diesel by using Biosurfactant from Pseudomonas aeruginosa F722 (Pseudomonas aeruginosa F722부터 유래된 biosurfactant를 이용한 등.경유 혼합물의 생분해율 향상)

  • ;;;skubo Motoki
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.529-535
    • /
    • 2003
  • We studied degradation effects of hydrophobic substrate such as kerosene and diesel by adding a biosurfactant originated from Pseudomonas aeruginosa F722 and chemical surfactants (Tween 80 and detergent) with aeration. The surface tensions of the biosurfactant, Tween 80 and detergent were 30mN/m, 39mN/m and 31mN/m, respectively. When the concentration of biosurfactant added in C-medium was 0.01 and 0.15%(w/v), the ratios of hydrocarbon degradation were 94.3% and 94.2% respectively. It was 6.2%(w/v) higher than when the concentrations of added biosurfactant were 0.05, 0.1 and 0.2%. The degradation ratios of the chemical surfactants (Tween 80 and detergent) were 94.5% and 93.5% respectively. The effects of the biosurfactant and chemical surfactants were similar on the degradation ratio in mixtures of kerosene and diesel. However, the population of viable p. aeruginosa F722 at the end of the cultivation period was twice as higher in the biosurfactant than that in the chemical surfactant. We also studied the effect of aeration (0.5vvm) on the degradation ratio. The biosurfactant addition experiment was conducted with 0.5vvm air, 35$^{\circ}C$, 150rpm, pH 8.0, 3days, 1.0% (w/v) substrate. When p. aeruginosa F722 and 0.15%(w/v) biosurfactant were added, the degradation ratio of hydrocarbon was 94.8%. Without p. aeruginosa F722, it was 68%. Thus, with aeration, the degradation ratio of hydrocarbon was increased by 26.8%. In addition, the cultivation time was shortened by 1/3. The degradation ratios of hydrocarbon in shaking culture (cultivation time; 3days) and stationary culture (cultivation time; 10days) were 94.8 and 93.7% respectively. Thus, the addition of biosurfactant and aeration enhanced the degradation of hydrocarbon originated kerosene and diesel.

Characterization of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility has been combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze frying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance spectroscopy. Both lactyl group and EDC conversion increased as the mole ratio of lactide to HA increased from 5 to 13. The membrane swelled less and became more brittle with the more addition of lactyl group resulting from the higher mole ratio of lactide to HA. Swelling ratio decreased and tensile modulus increased due to the more addition of lactyl group as the EDC concentration increased or reaction temperature decreased. Drug release experiment from various membranes with different degree of crosslinking showed that permeability decreased with increasing degree of crosslinking. The degradation became slower with the more addition of lactyl group. Mechanical property and degradation rate of the synthesized membrane were shown to be controlled through adjusting operation parameters such as mole ratio, temperature, and crosslinking agent concentration.