• Title/Summary/Keyword: Degradation Evaluation

Search Result 1,068, Processing Time 0.032 seconds

A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II) (12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II))

  • Kim, Chang-Hui;Seo, Hyun-Uk;Yoon, Kee-Bong;Park, Ki-Sung;Kim, Seoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

Chaotic evaluation of material degradation time series signals of SA 508 Steel considering the hyperspace (초공간을 고려한 SA 508강의 재질열화 시계열 신호의 카오스성 평가)

  • 고준빈;윤인식;오상균;이영호
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.86-96
    • /
    • 1998
  • This study proposes the analysis method of time series ultrasonic signal using the chaotic feature extraction for degradation extent evaluation. Features extracted from time series data using the chaotic time series signal analyze quantitatively degradation extent. For this purpose, analysis objective in this study is fractal dimension, lyapunov exponent, strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal correlation) dimensions, lyapunov exponents, energy variation showed values of 2.217∼2.411, 0.097∼ 0.146, 1.601∼1.476 voltage according to degardation extent. The proposed chaotic feature extraction in this study can enhances precision ate of degradation extent evaluation from degradation extent results of the degraded materials (SA508 CL.3)

  • PDF

Development of Materials Degradation Evaluation Program for Nuclear Power Plants (원전 재료열화 평가프로그램 개발)

  • Shin, Ho-Sang;Oh, Young Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.23-29
    • /
    • 2011
  • The renewed global interest in nuclear power has arisen from the need to reduce greenhouse gas emissions and to provide sufficient electricity for a growing global population before the accident at Fukushima Dai-ichi nuclear power plant in Japan. In spite of the safety issues of nuclear power plants raised by the ongoing Japanese nuclear crisis, many countries with nuclear power plants (NPPs) are still implementing license extensions of 10~20 years, and even consideration is being given to the concept of life-beyond-60, a further period of license extension from 60 to 80 years. To solving the materials aging problem is integral to its success. To evaluate the plant aging phenomena, a lot of background information such as materials and environment of the parts of the reactor and plant systems is needed by the experts. Information on degradation mechanisms is also used. In this paper, a materials degradation evaluation program called OnMDE-SYS (On-line Materials Degradation Evaluation System) is introduced. The developed program provides a variety of information on the materials and stressors as well as operational experience to the experts. It is also anticipated that the experts can perform materials degradation assessment on the web directly by referring to domestic and international information about the degradation of a nuclear power plants through OnMDE-SYS.

Evaluation of Degradation of 2.25Cr-1Mo Materials using the Nonlinear Acoustic Effect (초음파 비선형성을 이용한 2.25Cr-1Mo 강의 열화도 평가)

  • Choi, Yun-Ho;Kim, Hyun-Mook;Jhang, Kyung-Young;Park, Ik-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.222-227
    • /
    • 2001
  • Nonlinear acoustic effect has been considered as an effective tool for the evaluation of material degradation. In this paper, the applicability of nonlinear acoustic effect to the evaluation of degradation of 2.25Cr-1Mo steel is investigated. Firstly, a number of 2.25Cr-1Mo steel samples were heat-treated, and their damage mechanism was examined. Secondly, Ultrasonic nonlinear parameter was measured. Nonlinear acoustic parameter was found to be clearly sensitive to the material degradation.

  • PDF

Degradation Estimation Of Material by Barkhausen Noise Analysis (바크하우젠 노이즈 해석에 의한 재료의 열화도 평가)

  • Lee Myung Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • The destructive method is reliable and widely used for the estimation of material degradation but it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. In this study, various nondestructive evaluation(NDE) parameters of the Barkhausen noise method, such as MPA(Maximum Peak Amplitude), RMS, IABNS(Internal Area of Barkhausen Noise on Signal) and average amplitude of frequency spectrum are investigated and correlated with thermal damage level of 2.25cr-1.0Mo steel using wavelet analysis. Those parameters tend to increase while thermal degradation proceeds. It also turns out that the wavelet technique can help to reduce experimental false call in data analysis.

Nondestructive Characterization and In-situ Monitoring of Corrosion Degradation by Backward Radiated Ultrasound

  • Song, Sung-Jin;Kim, Young H.;Bae, Dong-Ho;Kwon, Sung D.
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.114-119
    • /
    • 2005
  • Since the degradation caused by corrosion is restricted to the surface of materials, conventional ultrasonic nondestructive evaluation methods based on ultrasonic bulk waves are not applicable to characterization of the corrosion degradation. To take care of this difficulty, a new nondestructive evaluation method that uses ultrasonic backward radiation has been proposed recently. This paper explores the potential of this newly developed method for nondestructive characterization and in-situ monitoring of corrosion degradation. Specifically, backward radiated ultrasounds from aged thermo-mechanically controlled process (TMCP) steel specimens by corrosion fatigue were measured and their characteristics were correlated to those of the aged specimens. The excellent correlation observed in the present study demonstrates the high potential of the backward radiated ultrasound as an effective tool for nondestructive characterization of corrosion degradation. In addition, the potential of the backward radiated ultrasound to in-situ monitoring of corrosion degradation is under current investigation.

Nondestructive Evaluation for Material Degradation of 2.25Cr-1Mo steel by Ultrasonic Wave (초음파를 이용한 재질열화의 비파괴적 평가)

  • 김정석;박은수;박인근;김현묵
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.369-374
    • /
    • 2000
  • This study has been achieved on the characteristics of ultrasonic wave in 2.25Cr-1Mo steel to evaluate the feasibility of ultrasonic nondestructive technique on the assessment of aging degradation. The measured values were used find a relationship between the ultrasonic propagation properties and degradation such as coarsening of carbides and precipitates. The ultrasonic attenuation coefficient was mainly affected by the grain size of prior austenitic phase as well as degradation. In this results, degradation and grain size in 2.25Cr-1Mo steel was able to cope with the changes in ultrasonic wave properties by applying the nondestructive evaluation method

  • PDF

Evaluation of Chaotic evaluation of degradation signals of AISI 304 steel using the Attractor Analysis (어트랙터 해석을 이용한 AISI 304강 열화 신호의 카오스의 평가)

  • 오상균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2000
  • This study proposes that analysis and evaluation method of time series ultrasonic signal using the chaotic feature extrac-tion for degradation extent. Features extracted from time series data using the chaotic time series signal analyze quantitatively material degradation extent. For this purpose analysis objective in this study if fractal dimension lyapunov exponent and strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical syste, In experiment fractal(correlation) dimensions and lyapunov experiments showed values of mean 3.837-4.211 and 0.054-0.078 in case of degradation material The proposed chaotic feature extraction in this study can enhances ultrasonic pattern recognition results from degrada-tion signals.

  • PDF

Fundamental Study on Degradation Evaluation of Marine Diesel Engine Exhaust Valve by Nondestructive Test (비파괴법에 의한 선박용 디젤엔진 배기밸브의 열화도 평가에 관한 기초적 연구)

  • Sim, K.H.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.51-56
    • /
    • 1999
  • The ultrasonic method, which is well known as nondestructive test method, is widely used to evaluate the material damage due to degradation. However, this method is just used for measuring the crack size and the thickness loss of the tube. The purpose of this study is to investigate the applicability of the ultrasonic technique for the evaluation of marine diesel engine exhaust valve and to suggest the correlations between the ultrasonic characteristics and valve degradation. From the evaluation of the results obtained, the technique of using the ultrasonic property was founds to be a efficient method to evaluate the degree of marine diesel engine exhaust valve by nondestructive test.

  • PDF

Development of Lifetime Evaluation and Management Technologies for Nuclear Power Plants (원자력발전소 수명평가 및 수명관리 기술개발)

  • Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.991-1004
    • /
    • 2009
  • Operating experience of the various components in the nuclear power plants has shown that a variety of degradation mechanisms can occur during operation. Therefore, the accurate lifetime evaluation and systematic management are very important for the safe as well as the economical operation of the nuclear power plants. In this paper, the characteristics of a total of 17 degradation mechanisms were reviewed and the plausible degradation mechanisms such as stress corrosion cracking, fatigue, irradiation embrittlement, and so on, were identified. Also, the lifetime evaluation technologies which have been developed for the application to the domestic nuclear power plants are described. In addition, a total of 48 aging management programs which have been established for the safe operation of the various components are explained.