• Title/Summary/Keyword: Degradable protein

Search Result 74, Processing Time 0.018 seconds

Effect of extrusion of soybean meal on feed spectroscopic molecular structures and on performance, blood metabolites and nutrient digestibility of Holstein dairy calves

  • Berenti, Ammar Mollaei;Yari, Mojtaba;Khalaji, Saeed;Hedayati, Mahdi;Akbarian, Amin;Yu, Peiqiang
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.855-866
    • /
    • 2021
  • Objective: Performance and physiological responses of dairy calves may change by using extruded soybean meal (ESBM) instead of common soybean meal (SBM) in starter feed. The aims of the current study were i) to determine the effect of extrusion processing of SBM on protein electrophoretic size, fourier transform infrared spectroscopy (FTIR) structures and Cornell Net Carbohydrate and Protein System (CNCPS) protein subfractions and ii) to determine the effect of substitution of SBM with ESBM in starter feed of Holstein heifer calves during pre and post-weaning on performance, nutrient digestibility, and blood metabolites. Methods: The SBM was substituted with ESBM at the level of 0%, 25%, 50%, 75%, and 100% (dry matter [DM] basis). Fifty heifer calves (initial body weight 40.3±0.63 kg) were used for the study. After birth, animals were fed colostrum for 3 days and then they were fed whole milk until weaning. Animals had free access to starter feed and water during the study. Results: Extrusion of SBM decreased electrophoretic protein size and increased rapidly degradable true protein fraction, changed FTIR protein and amide II region. With increasing level of ESBM in the diet, starter intake increased quadratically during the pre-weaning period (p<0.05) and body weight, DM intake and average daily gain increased linearly during the post-weaning and the whole study period (p<0.05). Tbe DM and crude protein digestibilities at week 14 and blood glucose and beta hydroxybutyric acid increased linearly in calves as the level of ESBM increased in the diet (p<0.05). Conclusion: Dairy calves performance and physiological responses were sensitive to SBM protein characteristics including electrophoretic size, FTIR structures and CNCPS protein fractions.

Effect of Thermal Processing of Cereal Grain on the Performance of Crossbred Calves Fed Starters Containing Protein Sources of Varying Ruminal Degradability

  • Pattanaik, A.K.;Sastry, V.R.B.;Katiyar, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1239-1244
    • /
    • 2000
  • In order to investigate the effect of incorporation of thermally processed cereal (maize) grain and differently degradable protein sources in the calf starter, twenty four newly born crossbred $(Bos\;taurus{\times}Bos\;indicus)$ calves were assigned at random to six diets in a $3{\times}2$ factorial design involving three protein sources viz. groundnut meal (GN), cottonseed meal (CS) and meat and bone meal (MB), each along with two differently processed grain, namely ground raw (R) and pressure cooked (P) maize. The corresponding calf starters with green oats (Avena sativa) were given free-choice from 14 d onwards till the end of the 90 d experimental feeding. A restricted milk diet was fed till the age of weaning at 60 d. Total DM intake was not affected by cereal or protein sources. However, daily intake of DM (59.23 vs 66.45 g) and CP (12.38 vs 14.10 g) per kg $W^{0.75}$ was reduced (p<0.05) due to cereal processing. Better (p<0.05) feed and protein efficiencies after weaning and during entire period in calves fed processed maize resulted in a trend of higher $(p{\leq}092)$ growth rate especially when GN was the source of protein. In comparison among protein sources, calves fed MB diets tended to grow faster $(p{\leq}098)$ concurrent with a higher CP intake before weaning. It is thus evident that thermal processing of maize in the calf starter seems to improve calf performance. Moreover, results indicated that feeding of protein and starch sources of matching ruminal degradability may prove beneficial for early growth of crossbred calves.

Effects of Dietary Nitrogen Sources on Fiber Digestion and Ruminal Fluid Characteristics in Sheep Fed Wheat Straw

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1374-1382
    • /
    • 2001
  • Fifteen Inner Mongolian wethers with permanent ruminal and duodenal cannulas were used to study the effects of dietary rumen-undegradable protein (RUP) to rumen-degradable protein (RDP) ratios or protein sources on fiber digestion in the gastrointestinal tract and ruminal fluid characteristics. Fiber digestion and ruminal fermentation were not affected (p>0.05) by dietary RUP to RDP ratios (from 1.54 to 0.72). Soybean meal supplementation improved ruminal digestion. Fish meal supplementation increased (p<0.05) the ruminal degradability of fiber. The different RUP to RDP ratios (from 1.54 to 0.72) did not influence (p>0.05) ruminal fluid pH, but there were differences (p<0.05) in ruminal fluid $NH_3-N$ concentration because of urea replacement. Soybean meal as a dietary protein source decreased (p<0.05) ruminal fluid pH and increased (p<0.05 or p<0.01) $NH_3-N$, acetate, propionate and butyrate concentrations in the rumen. Fish meal as a dietary protein source decreased (p<0.05 or p<0.01) ruminal $NH_3-N$ and acetate concentrations and increased (p<0.05) ruminal propionate concentration. It can be concluded that dietary protein sources have more significant effect on fiber digestion and ruminal fermentation than different dietary RUP to RDP ratios, when the dietary crude protein requirements of growing sheep are satisfied.

Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

  • Gao, Wei;Chen, Aodong;Zhang, Bowen;Kong, Ping;Liu, Chenli;Zhao, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.485-493
    • /
    • 2015
  • This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen microorganisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

Nutritional Evaluation of Bamboo Shoot Shell and Its Effect as Supplementary Feed on Performance of Heifers Offered Ammoniated Rice Straw Diets

  • Liu, J.X.;Wang, X.Q.;Shi, Z.Q.;Ye, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1388-1393
    • /
    • 2000
  • The present study was conducted to examine the feasibility of utilising bamboo (Bambusa arundinacea) shoot shell (BSS) in ruminants. Chemical composition, rumen degradability and some antinutritional compounds were determined for fresh and boiled BSSs to evaluate its feed value and safety. Thirty-two Holstein heifers were allocated to four groups and used to investigate the response in growth rate to supplementing ammoniated rice straw with fresh shell (phase 1) or silage of boiled BSS (phase 2). All animals were offered ammoniated straw ad libitum with 1kg of cotton seed meal (phase 1) or 0.5 kg of cotton seed meal and 0.5 kg of concentrate mixture (phase 2) per head per day. The BSS was supplemented at levels of 0, 3, 6 or 9 kg/d (phase 1) and 0, 5, 10 or 15 kg/d (phase 2) (as fed basis). The BSS was very high in moisture content, and its contents of crude protein and neutral detergent fiber were 13~16% DM and 65~76% DM, respectively; boiling resulting in higher moisture and protein. No hydrocyanic acid was detected in both BSSs and content of tannins was negligible. Rumen degradability of BSS was reasonably high, and with boiling the rapidly degradable fraction decreased, and potentially degradable component increased. Silage of the boiled BSS was slightly lower in both rapidly and slowly degraded fractions than the fresh BSS. Animals consumed all supplemented BSSs without any adverse health problems. Intake of ammoniated straw decreased with the increasing levels of BSS, but total intake was higher in almost all supplementary groups than in the non-BSS. Heifers had a higher growth rate in phase 1 with fresh BSS than in phase 2 with ensiled shell, and daily weight gains were 622, 629, 744 or 690 g in phase 1, and 578, 575, 677 or 635 g in phase 2 at four BSS levels, respectively. For both phases growth rate was significantly higher for the animals in groups 3 and 4 than those in groups 1 and 2 (p<0.01), with little difference between groups 1 and 2 (p>0.05) but significant difference between groups 3 and 4 (p<0.05). Supplementation with BSS also resulted in an improved feed conversion rate, with the least concentrate consumption in group 3 for both phases. It is concluded that the BSS has a high potential nutritional value as indicated by its medium protein content, reasonably high rumen degradability, and that inclusion of BSS in ammoniated rice straw diet is not only safe to animals, but also may improve growth rate of ruminants and feed conversion rate. It may be disadvantageous to use high amounts of BSS in ammoniated straw diets.

In Sacco Evaluation of Rumen Protein Degradation Characteristics and In vitro Enzyme Digestibility of Dry Roasted Whole Lupin Seeds (Lupinus albus)

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.358-365
    • /
    • 1999
  • The effects of dry roasting whole lupin seeds (lupinus albus, WLS) at 110, 130 or $150{^{\circ}C}$ for 15, 30 or 45 minutes on the in sacco rumen degradation characteristics, optimal heating conditions of time and temperature and in vitro enzyme digestibility were determined. Ruminant degradation characteristics (RDC) of crude protein (CP) of WLS were determined by in sacco technique in dairy cows. Measure ROC were soluble (S), undegradable (U), potentially degradable (D) fractions, lag time (TO) and rate of degradation (Kd) of insoluble but degradable fraction. Based on measured ROC, percentage bypass CP (%BCP) and bypass CP (BCP in g/kg, DM) were calculated. Degradability of CP was significantly reduced by dry roasting (p<0.001). The interaction of dry roasting temperature and time had significant effects on D (p<0.05), Kd (p<0.01), U (p<0.01), %BCP (p<0.001) and BCP (p<0.001) but not on S (p=0.923>0.05). With increasing time and temperature, S, D, Kd and U varied from 31.8%, 67.4%, 10.3%/h and 0.8% in the raw WLS (RWLS) to 27.1 %, 35.8%, 3.6%/h, 38.4% in $150{^{\circ}C}/45\;min$, respectively. All these effects resulted in increasing %BCP from 25.9 in RWLS to 61.0% in the $150{^{\circ}C}/45\;min$. Therefore BCP increased form 111.2 to 261.2 g/kg DM, respectively. Both %BCP and BCP at $150{^{\circ}C}/45\;min$ increased nearly 2.5 times over the RWLS. The effects of dry roasting on %BCP and BCP seemed to be linear up to the highest value tested. Although ROC had been altered by dry roasting, the In vitro perpsin-cellulase digestibility was generally unchanged. It was concluded that dry roasting was effective in shifting CP degradation from rumen to the lower gastrointestinal tract to potential reduce unnecessary N loss in the rumen. It might be of great value in successfully synchronizing the rhythms of release of nitrogen and energy in the rumen, thus achieving a more efficient fermentation of diets with high proportions of lignocellulosic resources. To determine the optimal dry roasting conditions, the digestibility of each treatment in the cows will be measured in the next trial using mobile bags technique.

The Effect of Addition of Apple Pomace on Quality and In situ Degradability of Black locust Silage (사과박 첨가가 아까시나무 사일리지의 품질과 in situ 소실율에 미치는 영향)

  • 조익환;황보순;안종호;김현진;이주삼
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.4
    • /
    • pp.123-134
    • /
    • 2001
  • The quality including in situ degradability in the rumen of Holstein of the black locust silage added with apple pomace was investigated in this study. The amount of apple pomace added in different treatments were 0, 20, 40 and 60% respectively. With higher amount of addition of apple pomace in black locust, crude protein content in the silage decreased. Crude protein contents in the apple pomace added silage were in the range between 11.7 and 13.7% and those were significantly lower than 16.3% of 100% black locust silage. The contents of ADF, NDF and crude ash were in the same trend as with crude protein, which were shown more clearly in the 40∼60% addition of apple pomace. Moisture content of 100% black locust silage was 56.7% however it significantly increased according to higher levels of addition of apple pomace(67.1∼73.8%). pH, lactic acid and total organic acid contents in 20∼60% addition of apple Pomace were 3.7∼4.3, 1.3∼2.2%, and 2.1∼6.0% respectively, however in 100% black locust silage those were significantly lower except pH as 5.4, 0.6% and 1.0% respectively. In situ disappearance rates of dry matter and NDF in the rumen were significantly higher at the stapes of incubation after 12h and 24h respectively in 20∼40% addition of apple pomace than in 100% black locust silage. No statistical differences were observed with quickly degradable fraction (a) in the disappearance rates of dry matter and NDF. In dry matter, however slowly degradable fractions (b) of 100% black locust and 60% addition of apple pomace were significantly higher as 99.7 and 99.8% respectively than 37.7∼50.5% of 20∼40% addition of apple pomace. On the contrary, fractional rate of disappearance (c) and effective degradability(ED) were significantly higher in 20∼40% addition of apple pomace as 0.0115∼0.0149 and 30.4∼31.9% respectively than the respective values of 0.0027 and 24.9% of 100% black locust. In NDF, b was significantly higher in apple pomace added silage(38.5∼99.8%) than in 100% black locust silage(14.9%). However, C was significantly lower in apple pomace added silage than in 100% black locust silage.

  • PDF

The Effect of Addition of Apple Pomace on Quality and In Situ Degradability of Orchardgrass Silage (사과박 첨가가 오차드그라스 사일리지의 품질과 In Situ 소실율에 미치는 영향)

  • 조익환;황보순;안종호;김현진;이주삼
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.3
    • /
    • pp.137-144
    • /
    • 2001
  • The quality including in situ degradability in the rumen of Holstein of the orchardgrass silage added with apple pomace was investigated in this study. The amount of apple pomace added in different treatments were 0, 20, 40 and 60% respectively. With higher amount of addition of apple pomace to orchardgrass, ADF, NDF and crude ash contents decreased significantly (p<0.05). Crude protein contents in the silages (11.8- 12.9%) were similar to that of 100% orchardgrass silage. Moisture contents increased according to the higher proportion of apple pomace in the silages. On the contrary to moisture content, pH was lower in 40-60% addition of apple pomace (3.7-3.9) than that of 100% orchardgrass silage (4.7). However the contents of lactic acid (1.7-2.5%), acetic acid (1.3- 1.7%) and total organic acid (2.9-4.2%) significantly increased according to higher levels of addition of apple pomace compared to the respective values of 100% orchardgrass silage (1.1%, 0.6% 1.7%). In siru disappearance rates of dry matter and NDF in the rumen were significantly higher at the stages of incubation after 24h in 40-60% addition of apple pomace than in 100% orchardgrass silage. No statistical differences were observed with quickly degradable fraction (a) and slowly degradable fraction (b) in the disappearance rates of dry matter and NDF. However, fractional rate of disappearance (c) and effective degradability (ED, k=0.08) for dry matter and NDF were significantly higher in 20-60% addition of apple pomace as 0.0076-0.0079 and 0.0099-0.0130. and 39.3-41.7% and 18.4- 20.6% respectively than the respective values of 0.0054 and 0.0064, and 36.8 and 16.5% of 100% orchardgrass silage. (Key words : Orchardgrass silage. Apple pomace. Lactic acid, In Situ Degradability. Effective degradability)

  • PDF

Evaluation of feed value of a by-product of pickled radish for ruminants: analyses of nutrient composition, storage stability, and in vitro ruminal fermentation

  • Jeon, Seoyoung;Sohn, Keun-Nam;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.58 no.9
    • /
    • pp.34.1-34.9
    • /
    • 2016
  • Background: By-products of pickled radish (BPR) are considered food waste. Approximately 300 g/kg of the total mass of raw materials becomes BPR. Production of pickled radish has grown continuously and is presently about 40,000 metric tons annually in Korea. The objective of the present study was thus to explore the possibility of using BPR as a ruminant feed ingredient. Results: BPR contained a large amount of moisture (more than 800 g/kg) and ash, and comprised mostly sodium (103 g/kg DM) and chloride (142 g/kg DM). On a dry matter basis, the crude protein (CP) and ether extract (EE) levels in BPR were 75 g/kg and 7 g/kg, respectively. The total digestible nutrient (TDN) level was 527 g/kg and the major portion of digestible nutrients was carbohydrate; 88 % organic matter (OM) was carbohydrate and 65 % of total carbohydrate was soluble or degradable fiber. The coefficient of variation (CV) of nutrient contents among production batches ranged from 4.65 to 33.83 %. The smallest CV was observed in OM, and the largest, in EE. The variation in CP content was relatively small (10.11 %). The storage stability test revealed that storage of BPR at $20^{\circ}C$ (room temperature) might not cause spoilage for 4 d, and possibly longer. If BPR is refrigerated, spoilage can be deferred for 21 d and longer. The in vitro ruminal fermentation study showed that substitution of annual ryegrass straw with BPR improved ruminal fermentation, as evidenced by an increase in VFA concentration, DM degradability, and total gas production. Conclusion: The major portion of nutrients in BPR is soluble or degradable fiber that can be easily fermented in the rumen without adverse effects, to provide energy to ruminant animals. Although its high sodium chloride content needs to be considered when formulating a ration, BPR can be successfully used as a feed ingredient in a ruminant diet, particularly if it is one component of a total mixed ration.