• Title/Summary/Keyword: Degradable

Search Result 326, Processing Time 0.021 seconds

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment (열화학적 전처리에 따른 탈수슬러지 및 음식물류폐기물의 병합혐기소화 효율 평가)

  • Lee, Wonbae;Park, Seyong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.

A Study on the Preparation of Ternary Transition Metal Coated-Dimensionally Stable Anode for Electrochemical Oxidation (전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구)

  • Park, Jong-Hyeok;Choi, Jang-Uk;Park, Jin-Soo
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.409-416
    • /
    • 2021
  • Dimensionally stable electrodes are one of the important components in electrochemical water treatment processes. In the manufacturing of the dimensionally stable electrodes, the type of metal catalyst coated on the surface of the metal substrate, the coating and sintering methods substantially influence their performance and durability. In this study, using Ir-Ru-Ta ternary metal coating, various electrodes were prepared depending on the coating method under the same pre-treatment and sintering conditions, and its performance and durability were studied. As a coating method, brush and spray coating were used. As a result, the reduction in the amount of catalyst ink was achieved because more amount of metal could be coated for the electrode using spraying with the same amount of catalyst ink. In addition, the spray_2.0_3.0 electrode prepared by a specific spray coating method shows the phenomenon of cracking and the uniform coating of the ternary metal on the surface of the coating layer, and results in a high electrochemically active specific surface area, and the decomposition performance of 4-chlorophenol was superior to the other electrodes. However, it was found that there was no significant difference in durability depending on the coating method.

Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats

  • Fan, Geng-Jen;Chen, Mei-Hsing;Lee, Churng-Faung;Yu, Bi;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.999-1009
    • /
    • 2022
  • Objective: To improve the feeding value of rice straw (RS), this study evaluated the potential of rice straw fermented with Pleurotus sajor-caju (FRS) as dairy goat feed. Methods: Spent Pleurotus sajor-caju mushroom substrate was used as fungi inoculum to break the lignocellulose linkage of rice straw, which was solid-fermented at 25℃ to 30℃ for 8 weeks. The ruminal degradation of pangolagrass hay (PG), FRS, and RS were measured in situ for 96 hours in three dry Holstein cows, respectively. Effect of fungi fermented RS on milking performance was studied in feeding trials. A total of 21 Alpine goats a trial were divided into 3 groups: a control group in which PG accounted for 15% of the diet dry matter, and FRS or RS was used to replace the PG in the control group. Goats were fed twice a day under two 28-day trial in individual pens. Meanwhile, a 3×3 Latin square trial (14 days/period) was conducted to study the rumen digestion of three diets by using three fistulated dry goats. Rumen contents were collected for metabolite analyses every one to three hours on the last two days. Results: In situ study showed that fermentation could elevate the rumen degradable fraction and effective degradability of RS (p<0.05). Effective degradability of FRS dry matter was significantly increased from 29.5% of RS to 41.7%. Lactating trial results showed that dry matter intake and milk yield in the PG group and FRS group were similar and higher than those in RS group (p<0.05). The concentration of propionic acid and total volatile fatty acid in the RS group tended to be lower than those in PG group (p<0.10). There were no differences in rumen pH value and ammonia nitrogen level among the groups tested. Conclusion: Fermentation of rice straw by spent Pleurotus sajor-caju mushroom substrate could substantially enhance its feeding value to be equivalent to PG as an effective fiber source for dairy goat. The fermented rice straw is recommended to account for 15% in diet dry matter.

Effect on the Physical Properties of Bio-Plastic Sheet Adding Corn Husk Which was Byproduct of Food Assets (식량자산 부산물인 옥수수 피 첨가가 바이오 플라스틱 시트의 물성에 미치는 영향)

  • Ahn, Kihyeon;Choi, Jae-Suk;Han, Jung-Gu;Park, UoonSeon;Lee, Roun;Park, Hyung Woo;Chung, SungTaek
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • This study investigated the characteristics for the optimal concentration of addition of the mixing solution through the corn husk pulverization and surface modification of biomass byproducts adding mixed solution between ESO and silane. And surveyed the specific surface area, water absorption, particle size and physical properties of bio- degradable plastic sheet. The specific surface area was 1.105 m2/g, particle size was the highest at 19 ㎛. The impact strength, tensile strength, elongation and hardness of plastic sheet showed the highest at the 1% concentration among the mixing solutions. The flexural strength and modulus was high according to the increasing the mixing solution. The results above showed that it was the best the adding 1% of mixed solution after silane treatment of corn husks for its manufacture as a bio-based plastic sheet.

Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing

  • Alessandra M.R.C.B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.451-460
    • /
    • 2023
  • Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.

A Study on the Method of Manufacturing Lactic Acid from Ginkgo Biloba Leaf Extraction Byproducts (은행잎 추출부산물로부터의 Lactic acid 제조법에 관한 연구)

  • Euisuk Ko;Hakrae Lee;Woncheol Shim;Soohyeon Lee;Sunjin Kim;Jaineung Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.95-102
    • /
    • 2023
  • Despite the easing of social distancing, demand for non-face-to-face services continues to rise. Recently, the EU is pursuing a comprehensive plastic use reduction by expanding the scope of plastic use regulations for packaging plastics according to the New Cyclical Economy Action Plan(NCEAP). In response to this trend, the packaging industry is moving away from conventional non-degradable/petroleum-based plastics and conducting research on packaging materials using biodegradable plastics such as PLA(Poly Lactic Acid), PBAT(Poly Butylene Adipate-co-butylene Terephthalate). On the other hand, ginkgo leaves occur in large quantities in Korea and act as a cause of slip accidents and flooding. In this study, a method to utilize ginkgo biloba leaf as a new alternative biomass resource was proposed by producing lactic acid through pretreatment, enzymatic saccharification, and fermentation processes. For the efficiency of lactic acid production, a comparative analysis of lignin content from before and after browning was performed. In addition, the degree of glucan extraction was evaluated by applying a pretreatment method using three catalysts: hot water, sulfuric acid, and sodium hydroxide. It is difficult to expect high production of lactic acid with single process. Therefore, an integrated process operation using both the pretreated hydrolyzate and the residual solid enzymatic saccharification solution must necessarily be applied.

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.

Analysis study on substances subject to management using long-term water quality monitoring data in tributaries of the Nakdong River basin (낙동강유역 지류에서의 장기 수질모니터링 자료를 이용한 관리 대상물질 분석 연구)

  • Byungseok Kal;Jaebeom Park;Seongmin Kim;Sangmin Shin;Soonja Jang;Minjae Jeon;Donghyun Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.326-334
    • /
    • 2023
  • The purpose of this study is to use long-term water quality monitoring data from tributaries of the Nakdong River system to identify problematic substances in tributaries by examining the rate of exceedance and increase in water quality targets. In the Nakdong River system, monitoring is conducted once a month for 38 tributaries that require intensive management, and this data was used to analyze trends in exceeding and increasing target water quality at each point. The analysis items are eight items that can be evaluated based on river water quality standards: DO, BOD, COD, TOC, SS, total phosphorus, fecal coliform, and total coliform. As a result of the analysis, the target water quality exceedance rate was more than 50%, and the items with an increasing trend were TOC, fecal coliform and total E. coli counts, and the items with an exceedance rate of less than 50% but an increasing trend were SS. TOC is believed to be caused by an increase in non-degradable substances, and the continued increase in Total Coliform will require management of Total ColiformTotal Coliform in effluent water from sewage treatment facilities in the future.

Connection of spectral pattern of carbohydrate molecular structure to alteration of nutritional properties of coffee by-products after fermentation

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Weixian Zhang;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1398-1407
    • /
    • 2024
  • Objective: The objective of this study was to determine internal structure spectral profile of by-products from coffee processing that were affected by added-microorganism fermentation duration in relation to truly absorbed feed nutrient supply in ruminant system. Methods: The by-products from coffee processing were fermented using commercial fermentation product, consisting of various microorganisms: for 0 (control), 7, 14, 21, and 28 days. In this study, carbohydrate-related spectral profiles of coffee by-products were correlated with their chemical and nutritional properties (chemical composition, total digestible nutrient, bioenergy values, carbohydrate sub-fractions and predicted degradation and digestion parameters as well as milk value of feed). The vibrational spectra of coffee by-products samples after fermentation for 0 (control), 7, 14, 21, and 28 days were determined using a JASCO FT/IR-4200 spectroscopy coupled with accessory of attenuated total reflectance (ATR). The molecular spectral analyses with univariate approach were conducted with the OMNIC 7.3 software. Results: Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included structural carbohydrate, cellulosic compounds, non-structural carbohydrates, lignin compound, CH-bending, structural carbohydrate peak1, structural carbohydrate peak2, structural carbohydrate peak3, hemicellulosic compound, non-structural carbohydrate peak1, non-structural carbohydrate peak2, non-structural carbohydrate peak3. The study results show that added-microorganism fermentation induced chemical and nutritional changes of coffee by-products including carbohydrate chemical composition profiles, bioenergy value, feed milk value, carbohydrate subfractions, estimated degradable and undegradable fractions in the rumen, and intestinal digested nutrient supply in ruminant system. Conclusion: In conclusion, carbohydrate nutrition value changes by added-microorganism fermentation duration were in an agreement with the change of their spectral profile in the coffee by-products. The studies show that the vibrational ATR-FT/IR spectroscopic technique could be applied as a rapid analytical tool to evaluate fermented by-products and connect with truly digestible carbohydrate supply in ruminant system.