• Title/Summary/Keyword: Degradable

Search Result 326, Processing Time 0.023 seconds

Enhancement of anaerobic digestion of sewage sludge by combined process with thermal hydrolysis and separation (하수슬러지 혐기성 소화 효율 향상을 위한 열가수분해-고액분리 결합 공정)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • The purpose of this study was to evaluate the performance of novel process with thermal hydrolysis and separation as pre-treatment of anaerobic digestion (AD). The dewatered sludge was pre-treated using THP, and then separated. The separated liquid used as substrate for AD and separated solid was returned on THP(Thermal Hydrolysis Process). The degree of disintegration (DD, based on COD) using only THP found 45.1-49.3%. The DD using THP+separation found 76.1-77.6%, which was higher than only THP. As result from dual-pool two-step model, the ratio of rapidly degradable substrate to total degradable substrate found 0.891-0.911 in separated liquid, which was higher than only THP. However, the rapidly degradable substrate reaction constant (kF) of only THP and THP+separation were similar. This results found that dewatered sludge was disintegrated by THP, and then rapidly degradable substrate of hydrolyzed sludge was sorted by separation.

Development of power system and degradation technology using arc plasma for the degradation of non degradable waste water (플라즈마를 이용한 액상 폐기물 처리 전원장치 개발 및 분해 기술 개발)

  • Han, Chul-Woo;Kim, June-Sung;Park, Sang-Hoon;Hwang, Lee-Ho;Rhee, Byong-Ho;Kang, Duk-Won;Kim, Jin-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1900-1902
    • /
    • 2004
  • The degradation systems of non degradable waste water consist of the arc plasma torch, power supply, a feeder of liquid waste and reactors. Output of stable plasma torch, suitable air flux, microscopic atomizing state of waste water and long reaction section must be to degrade waste water more efficiently. In this paper, we are designed the stable power system, the microscopic atomizing state of waste water and the efficient reactors to satisfy various conditions. Non degradable wast water used in this work was $Na_2$EDTA of 1.0 mol. The concentration of $CO_2$ and EDTA was analyzed using GC (Gas Chromatography) and HPLC (High Performance Liquid Chromatography). In the result show that $CO_2$ concentration was about 96% and EDTA was degraded approximately 96%.

  • PDF

Evaluation of Some Aquatic Plants from Bangladesh through Mineral Composition, In Vitro Gas Production and In Situ Degradation Measurements

  • Khan, M.J.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.537-542
    • /
    • 2002
  • A study was conducted to evaluate the nutritive potential value of different aquatic plants: duckweed (Lemna trisulaca), duckweed (Lemna perpusila), azolla (Azolla pinnata) and water-hyacinth (Eichhornia crassipes) from Bangladesh. A wide variability in protein, mineral composition, gas production, microbial protein synthesis, rumen degradable nitrogen and in situ dry matter and crude protein degradability were recorded among species. Crude protein content ranged from 139 to 330 g/kg dry matter (DM). All species were relatively high in Ca, P, Na, content and very rich in K, Fe, Mg, Mn, Cu and Zn concentration. The rate of gas production was highest in azolla and lowest in water-hyacinth. A similar trend was observed with in situ DM degradability. Crude protein degradability was highest in duckweed. Microbial protein formation at 24 h incubation ranged from 38.6-47.2 mg and in vitro rumen degradable nitrogen between 31.5 and 48.4%. Based on the present findings it is concluded that aquatic species have potential as supplementary diet to livestock.

DEGRADATION CHARACTERISTICS OF SOME TROPICAL FEEDS IN THE RUMEN

  • Navaratne, H.V.R.G.;Ibrahim, M.N.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1988
  • The rumen degradability of rice straw (untreated, urea-sprayed, urea-treated), grasses (Panicum maximum, Pennisetum clandestinum) and rice bran was compared. The mean in vivo organic matter digestibility of the untreated (US), urea-supplemented (SS) and urea-ammonia treated (TS) rice straw were 50.9, 53.9 and 57.4%, respectively. Rice bran contained extremely high levels of acid-insoluble ash (25.2% DM), and its OMD was 36.1%. Grasses had OMD values around 66%. Degradability measurements were performed with buffaloes using the nylon bag technique. The organic matter (OM) disappearance data were fitted to an model which was used to describe degradation pattern. The mean potentially degradable fraction for US, SS and TS was 61.5, 61.9 and 69.4%, respectively. Urea-ammonia treatment increased both the amount of OM degraded and the rate at which it was degraded in the rumen. Both grasses had similar values for degradable fraction (around 65%) and for rate constant for degradation (0.04). Rice bran contained high proportions of readily soluble material (23.9%), but the degradable OM fraction was only 13.2%. The low quality of rice bran is attributed to the contamination of rice hulls during processing.

Mechanical Properties and Degradability of Bio-degradable Agricultural Transplanting Pot Containing Rice By-product (벼 부산물을 함유한 생분해성 육묘폿트의 기계적 성질 및 분해 특성)

  • Han, Sang-Ik;Kang, Hang-Won;Byun, Dae-Woo;Jang, Ki-Chang;Seo, Woo-Duck;Ra, Ji-Eun;Kim, Jun-Young;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The bio-degradable transplanting pot containing rice by-product (rice-hull and rice-bran) were developed, and tested their ability for agronomic use. Rice by-products were crosslinked with biodegradable aliphatic ally aromatic copolyesters or urea resin for making transplanting pot. Mechanical properties and degradability of these pots were measured and compared to those of the Jiffy pot (commercially used bio-degradable pot). Mechanical strength was higher than that of Jippy pot, and bio-degradability was excellent under the actual field condition. In addition, the pot could be degraded within 3 months under the ground. Our result indicated bio-degradable pot containing rice by-products has a great potential for such agronomic use.