• 제목/요약/키워드: Degradability

검색결과 342건 처리시간 0.024초

반추동물용 사료첨가제개발을 위한 홀스타인 젖소의 반추위로부터 분리한 혐기성 섬유소 분해균의 특성연구 (Isolation of Anaerobic Cellulolytic Bacteria from the Rumen of Holstein Dairy Cows to Develop Feed Additives for Ruminants)

  • 최낙진;이기영;정광화;김창현
    • 한국유기농업학회지
    • /
    • 제20권3호
    • /
    • pp.327-343
    • /
    • 2012
  • In order to develop a high cellulolytic direct-fed microorganism (DFM) for ruminant productivity improvement, this study isolated cellulolytic bacteria from the rumen of Holstein dairy cows, and compared their cellulolytic abilities via DM degradability, gas production and cellulolytic enzyme activities. Twenty six bacteria were isolated from colonies grown in Dehority's artificial (DA) medium with 2% agar and cultured in DA medium containing filter paper at $39^{\circ}C$ for 24h. 16s rDNA gene sequencing of four strains from isolated bacteria showed that H8, H20 and H25 strains identified as Ruminococcus flavefaciens, and H23 strain identified as Fibrobacter succinogenes. H20 strain had higher degradability of filter paper compared with others during the incubation. H8 (R. flavefaciens), H20 (R. flavefaciens), H23 (F. succinogenes), H25 (R. flavefaciens) and RF (R. flavefaciens sijpesteijn, ATCC 19208) were cultured in DA medium with filter paper as a single carbon source for 0, 1, 2, 3, 4 and 6 days without shaking at $39^{\circ}C$, respectively. Dry matter degradability rates of H20, H23 and H25 were relatively higher than those of H8 and RF since 2 d incubation. The cumulative gas production of isolated cellulolytic bacteria increased with incubation time. At every incubation time, the gas production was highest in H20 strain. The activities of carboxymethylcellulase (CMCase) and Avicelase in the culture supernatant were significantly higher in H20 strain compared with others at every incubation time (p<0.05). Therefore, although further researches are required, the present results suggest that H20 strain could be a candidate of DFM in animal feed due to high cellulolytic ability.

Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains

  • Hosoda, Kenji;Sasahara, Hideki;Matsushita, Kei;Tamura, Yasuaki;Miyaji, Makoto;Matsuyama, Hiroki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1213-1220
    • /
    • 2018
  • Objective: An experiment was conducted to assess the antioxidant contents and activities of colored rice grains and to evaluate their nutritive characteristics in terms of chemical composition and in situ ruminal degradation. Methods: Ten cultivars of colored rice grains (Oryza sativa L.) collected from several areas of Japan were studied, and control rice without pigment, maize, barley, and wheat grains were used as control grains. Their chemical compositions, pigment, polyphenol contents, total antioxidant capacity (TAC), and degradation characteristics were determined. Results: The starch contents of the colored rice grains were in the range of 73.5% to 79.6%, similar to that of the control rice grain. The black and red rice grains contained anthocyanin (maximum: $5,045.6{\mu}g/g$) and proanthocyanidin (maximum: $3,060.6{\mu}g/g$) at high concentrations as their principal pigments, respectively. There were significantly (p<0.05) positive relationships among the pigment contents, polyphenol content, and TAC values in the colored and control rice grains, indicating that the increase in pigment contents also contributed to the increased polyphenol content and TAC values in the colored rice grains. The dry matter and starch degradation characteristics, as represented by c (fractional degradation rate of slowly degradable fraction) and by the effective degradability, of the colored rice grains and the control rice grain were ranked as follows among commonly used grains: wheat>barley${\geq}rice$>maize. The colored rice grains also included the most-digestible starch, since their potential degradable fraction and actual degradability at 48 h incubation were almost 100%. Conclusion: Colored rice grains have high potential to be used as antioxidant sources in addition to starch sources in ruminants.

Comparative study of some analytical methods to quantify lignin concentration in tropical grasses

  • Velasquez, Alejandro V.;Martins, Cristian M.M.R.;Pacheco, Pedro;Fukushima, Romualdo S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1686-1694
    • /
    • 2019
  • Objective: Lignin plays a relevant role in the inhibition of cell wall (CW) structural carbohydrate degradation. Thus, obtaining accurate estimates of the lignin content in tropical plants is important in order to properly characterize the mechanism of lignin action on CW degradation. Comparing conflicting results between the different methods available for commercial use will bring insight on the subject. This way, providing data to better understand the relationship between lignin concentration and implications with tropical forage degradation. Methods: Five grass species, Brachiaria brizantha cv $Marand{\acute{u}}$, Brachiaria brizantha cv $Xara{\acute{e}}s$(MG-5), Panicum maximum cv Mombaça, Pennisetum purpureum cv Cameroon, and Pennisetum purpureum cv Napier, were harvested at five maturity stages. Acid detergent lignin (ADL), Klason lignin (KL), acetyl bromide lignin (ABL), and permanganate lignin (PerL) were measured on all species. Lignin concentration was correlated with in vitro degradability. Results: Highly significant effects for maturity, lignin method and their interaction on lignin content were observed. The ADL, KL and ABL methods had similar negative correlations with degradability. The PerL method failed to reliably estimate the degradability of tropical grasses, possibly due to interference of other substances potentially soluble in the $KMnO_4$ solution. Conclusion: ADL and KL methods use strong acid ($H_2SO_4$) and require determination of ash and N content in the lignin residues, therefore, increasing time and cost of analysis. The ABL method has no need for such corrections and is a fast and a convenient method for determination of total lignin content in plants, thus, it may be a good option for routine laboratory analysis.

Nutrient composition and in vitro fermentability of corn grain and stover harvested at different periods in Goesan, a mountainous area

  • Nogoy, Kim Margarette;Zhang, Yan;Lee, Ye Hyun;Li, Xiang Zi;Seong, Hyun A;Choi, Seong Ho
    • Journal of Animal Science and Technology
    • /
    • 제61권1호
    • /
    • pp.18-27
    • /
    • 2019
  • With South Korea's limited capability of feed production because of its relatively small cultivable area, the country is pushed to depend on foreign feed imports despite the immensely fluctuating price of corn. Hence, intensive efforts to increase the total cultivable area in Korea like extending of farming to mountainous area is being practiced. Corn was planted in Goesan County, a mountainous area in the country. Grain and stover were harvested separately in three harvest periods: early-harvest (Aug 8), mid-harvest (Aug 18), and late-harvest (Aug 28). The nutrient composition such as dry matter (DM), crude protein (CP), crude fat (EE), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and non-fibrous carbohydrates (NFC) was determined after harvest. Effective degradability (ED) of the major nutrients (DM, NDF, ADF, and CP) were measured through in vitro fermentation of rumen fluid from Hanwoo (Korean cattle). pH, ammonia-N concentration, volatile fatty acid (VFA) concentration, and gas production were periodically measured at 0, 3, 6, 12, 24, 48, and 72 h. Corn grain showed higher nutrient content and ED than stover. It also had higher gas production but its pH, ammonia-N, and total VFA concentration were lower than corn stover. The best nutrient composition of corn grain was observed in early-harvest (high CP, EE, NDF, OM, NFC, and low ADF). Early-harvest of corn grain also had high effective degradability of dry matter (EDDM), effective degradability of neutral detergent fiber (EDNDF), effective degradability of acid detergent fiber (EDADF), and total VFA concentration. On the other hand, the best nutrient composition of stover was observed in mid-harvest (high DM, CP, NDF, and low ADF). EDDM, EDNDF, and EDADF were pronounced in early-harvest and mid-harvest of stover but the latter showed high total VFA concentration. Hence, early and mid-harvested corn stover and grain in a mountainous area preserved their nutrients, which led to the effective degradation of major nutrients and high VFA production.

A study on comparative feeding value of corn flakes according to temperature and retention time in the pressurized steam chamber

  • Ahn, Jun Sang;Shin, Jung Suh;Kim, Min Ji;Son, Gi Hwal;Kwon, Eung Gi;Shim, Jae Yoon;Kim, Il Young;Cho, Sung Myoun;Cho, Sang Rae;Park, Byung Ki
    • Journal of Animal Science and Technology
    • /
    • 제61권3호
    • /
    • pp.170-181
    • /
    • 2019
  • This study aimed to investigate the effects of temperature and retention time of the pressurized steam chamber on the ruminal fermentation characteristics and nutrient degradability of corn flakes in three Korean native Hanwoo cows and three Holstein cows implanted with a ruminal fistula. Corn kernels were categorized into 13 groups based on the chamber temperature (range, $100^{\circ}C-116^{\circ}C$) and retention time (range, 700-950 s). The pH value was lowest in T1 regardless of breed. Propionate concentration was the highest in T2 (p < 0.05). Total-volatile fatty acid (VFA) concentration was slightly but not significantly greater in T2 than in other conditions. Dry matter (p < 0.05), starch, and crude protein (p < 0.05) degradability were the highest in T1. At different incubation times and with different breeds, dry matter, starch, and crude protein degradability of corn flakes were the highest in T1. Thus, the present results indicate that the optimal temperature and retention time of the pressurized steam chamber should be $100^{\circ}C-105^{\circ}C$ and 700-720 s.

Enzymatic and Non-enzymatic Degradation of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi Gang Guk;Kim Hyung Woo;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.346-352
    • /
    • 2004
  • Poly(3-Hydroxybutyrate-co­3-Hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to $60\;mol\%$) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical pro­perties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extra­cellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degra­dation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydro­philicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copoly­esters.

OPTIMISING CALIBRATION TRANSFER TO MEASURE DEGRADABILITY PARAMETERS OF HAYS AND DEHYDRATED FORAGES

  • Andueza, Donato;Munoz, Fernando;Martinez, Adela;De La Roza, Begona
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1268-1268
    • /
    • 2001
  • The availability of in vivo and in sacco degradability values are limited because those methods require work with fistulated animals and are rather complicated, labour intensive and expensive. That is to say, the dynamics and logistics of the methodology result in considerable work, due to limitations on the amount of samples, number of bags that can be placed in an animal and different time intervals to perform kinetic studies. Therefore, a simpler method is necessary to estimate the degradation characteristics of the feed. In this way, near infrared reflectance spectroscopy has been used to predict degradation characteristics of forages. In other hand, the possibility of achieving successful transfer of spectra and equations between instruments is closely related. The objective of this study was to confirm the potential of NIR to optimize work conditions to avoid duplicated efforts in collaborative trials on animal feeds evaluation between research institutions. For this purpose, one set with forty hays and dehydrated forages samples from SERIDA and ten samples with the same characteristics from SIA, were be used to create a spectral database. A calibration was developed using samples from degradation essays made in SERIDA to predict dry matter and crude protein degradability. With the addition of five samples from SIA in original calibration set, the effect of different origin and location was compensated.

  • PDF

In Sacco Ruminal Degradation Characteristics of Chemical Components in Fresh Zoysia japonica and Miscanthus sinensis Growing in Japanese Native Pasture

  • Ogura, S.;Kosako, T.;Hayashi, Y.;Dohi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권1호
    • /
    • pp.41-47
    • /
    • 2001
  • Ruminal degradation characteristics of dry matter (DM), neutral detergent fiber (NDF) and crude protein (CP) in fresh leaves of two Japanese native grasses (Zoysia japonica and Miscanthus sinensis) and one sown temperate grass (Dactylis glomerata) were investigated by an in sacco method in spring (mid-May), summer (mid-July) and autumn (mid-September). Japanese native grasses had higher NDF and lower CP concentrations than D. glomerata, and the CP concentration in native grasses decreased in autumn. Ruminal degradability of DM, NDF and CP was lower in native grasses than in D. glomerata (p<0.05) in all seasons. DM and NDF degradability decreased in summer for Z. japonica and D. glomerata, while it decreased in autumn for M. sinensis. CP degradability in Z. japonica was constant throughout the seasons, whereas that in M. sinensis greatly decreased in summer and autumn (p<0.05). It was concluded that Z. japonica could stably supply ruminally digestible nutrients for grazing animals in Japanese native pasture. However, the degradation characteristics of freshly chopped native grasses did not fit the exponential model of $D=a+b(1-e^{-ct})$ proposed by Ørskov and McDonald.

The Effect of Yerba Mate (Ilex Paraguariensis) Supplementation on Nutrient Degradability in Dairy Cows: An In sacco and In vitro Study

  • Hartemink, Ellen;Giorgio, Daniela;Kaur, Ravneet;Di Trana, Adriana;Celi, Pietro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1606-1613
    • /
    • 2015
  • This study was carried out to investigate the effects of Yerba Mate (YM) supplementation on nutrients' degradation, in vitro dry matter disappearance, gas production and rumen ammonia concentration. Three rumen-fistulated Holstein Friesian cows were used for the in situ incubations and provided rumen liquor for in vitro incubations. The inclusion of YM in a control diet (pasture+pellets) affected some in sacco degradation parameters. YM supplementation decreased the effective degradability and degradation rate of pasture crude protein (CP), and it seems to slow down the degradation of pasture neutral detergent fiber. A significant increase of degradation of pasture acid detergent fiber (ADF) was detected after YM inclusion in the control diet. YM supplementation reduced in vitro gas production of pasture and ammonia concentration of pellets. The addition of YM in ruminant diet could decrease ammonia production and increase protein availability for productive purposes. The moderate presence of tannins in YM could have affected the degradation kinetics of pasture CP and ADF and the ammonia production of pellets.

변성전분과 폴리에틸렌 혼합물의 물성 및 분해성 평가 (Mechanical Properties and Degradability of Modified Starch and Polyethylene Blends)

  • 장시훈;유영선;서종철;박수일
    • 한국포장학회지
    • /
    • 제16권2_3호
    • /
    • pp.59-65
    • /
    • 2010
  • Starch was modified with epichlorohydrin(ECH) to improve the miscibility with LDPE and LLDPE. Native starch or epichlorohydrin treated starch was mixed with grycerol and LDPE/LLDPE resin using a kneader and extruded using a single screw extruder to make pallets. The pallets were compression-molded at 145 into composite boards to evaluate their color, oxygen permeation, mechanical and thermal properties, and degradability under UV irradiation. Sheets with epichlorohydrin treated starch generally showed higher L-value than that of native starch blend sheets. The hunter b-values in both native starch blends and epichlorohydrin treated starch blends increased with Increasing starch contents. Tensile strength and percent elongation of sheets decreased with increasing starch contents. Tensile strength and percent elongation of sheets decreased with increasing starch contents. The degradability of blends under UV radiation increased with increasing starch contents in both blend types. The results represents that crosslinking of starch with epichlorohydrin may be a good method to improve miscibility of starch with petroleum-based materials.

  • PDF