• Title/Summary/Keyword: Defrosting control

Search Result 17, Processing Time 0.034 seconds

A Study of the Defrosting Control in the Application of Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 연구)

  • Jeon, ChangDuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • This study attempted to investigate the value of photoelectric sensors in terms of a defrost-control method. Tests were conducted in a calorimeter room under the heating with the defrost-performance test conditions described in KS C 9306. Accordingly, the photoelectric technology is a competitive defrost-control method that can precisely control the operational defrost cycle using the output voltages that are proportional to the frost height. The heating period is gradually reduced because the complex defrost-control method, for which the sensors initiate the defrosting process and the defrosting process is terminated by the time parameter, could not adjust the net defrosting time by itself. Therefore, a complex defrost-control method, for which the photoelectric sensors start the defrosting process and it is terminated by the temperature parameter, is preferred because of the adjustment of the net defrosting time. Regardless of the defrost-control method, the first defrosting cycle is activated earlier than the times that are determined in the second and third cycles and so on, because the first operation cycle can decide the characteristics of the subsequent cycle.

Feasibility of the Defrost Control by Photoelectric Technology via Comparison with the Temperature Differential Defrosting Method (온도차 감지 제상법과의 비교를 통한 광센서 제상법의 타당성 검증을 위한 연구)

  • Jeon, Chang-Duk;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.434-440
    • /
    • 2014
  • Experiments were performed to verify if performance and characteristic curves obtained from the temperature differential defrosting method, where surface temperature is measured to judge defrosting condition, can be reproduced by the photoelectric technology where defrosting condition is judged by photoelectric sensors. The output voltage of a phototransistor and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger are compared. The results showed that the photoelectric sensors can be used as a defrost control device. On-off control timings in temperature differential defrosting method are in good agreement with those predicted by the high and low threshold output voltages of the photoelectric sensor.

3D Unsteady Numerical Analysis to Design Defrosting System of Automotive Windshield Glass (자동차 전면유리의 제상시스템 설계를 위한 3차원 비정상 수치해석)

  • Kang, Shin-Hyung;Lee, Jin-Ho;Byun, Ju-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • The present research is based upon the numerical analysis of a car windshield in order to represent the optimum design guide to improve the overall defrosting performance of the system. First, the control factors that highly affect the defrosting performance of a car windshield are chosen and afterwards, the optimum variables of each control factor are extracted out to analyze its performance. The main control factors for this research are respectively, the air injection angle of a defroster nozzle, the height of a nozzle outlet, and the ratio of the width to the height of a nozzle outlet. For such case when the air inlet angle is relatively small, the flow near the vicinity of the inner face of a windshield tends to expand. As a consequence, the heat transfer rate through the windshield decreases. Also, the height of a nozzle outlet is recommended to maintain its size to minimum. However, when the ratio mentioned before is designed less than unity, the defrosting performance decreases.

Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter (수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구)

  • Youn, Young-Muk;Kader, Md. Faisal;Lee, Kum-Bae;Jun, Yong-Du
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

An Analysis of the Control and Defrost Patents for Heat Pump (압축식 열펌프의 제상${\cdot}$제어 특허기술 분석)

  • Choi Jong Min;Sim Yun-Hee;Lee Sang Hyuk;Lee Jaehoon;Lee Jinwook;Park Seong-ryong;Kim Yongchan;Yoon Joonsang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1192-1203
    • /
    • 2005
  • A technical analysis was conducted to predict the development trend for heat pump system. The study was based on a submitted patent from 1983 to 2002 in Korea, U.S.A. and Japan. The total number of raw data from the registered database was 19,261 and the obtained data to be analyzed through the filtering process was 5,143. Technical development of compression type heat pump was more dominant than the other types, absorption, adsorption, and chemical heat pump. The patents for compression type made up over $80\%$ in each country, Most of patents were developed for the defrosting and controlling technology of the compression type heat pump system. Approximately $24\%\;and\;62\%$ of the patents about compression type heat pump were for defrosting and control technologies, respectively.

An Experimental Study on the Heat Transfer Performance of an Air-Source Heat Pump Using a PCM Unit for Continuous Heating (PCM 유닛을 적용한 공기 열원 히트펌프의 연속난방 성능 특성에 관한 실험적 연구)

  • Chang, Min;Jung, Dong Il;Jung, Jong Ho;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.537-543
    • /
    • 2015
  • Air-source heat pumps are widely used in winter as heating units due to their higher efficiency compared to electronic heaters or gas fired equipment. However, the air-source heat pump can cause discomfort during periodic defrosting operations. In this study, a PCM unit for continuous heating was adopted to solve this problem. The PCM unit consisted of a PCM, a heat exchanger, and control valves. It was installed between the outdoor and indoor units. The performance of the proposed system was measured during both defrosting and heating operations. The indoor unit showed an average leaving temperature of $26^{\circ}C$ after adopting the PCM unit for continuous heating during the defrosting operation.

Feasibility Study on a Defrost Control Method by Using a Photoelectric Sensors (광센서를 이용한 제상제어 방법에 대한 타당성 검토)

  • Jeon, Chang-Duk;Kim, Dong-Seon;Lee, Seung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3389-3395
    • /
    • 2014
  • Conventional methods, such as the clock time control method and temperature difference control method, for defrost control often encounter mal-defrost and a waste of energy. Therefore, a more efficient method is needed to control defrosting precisely. A photoelectric sensor unit consisting of an emitter and a collector was installed in the front of outdoor heat exchanger. Accurate defrost control was performed by monitoring and using the change in output voltage according to the presence of frost. In this study, experiments were performed to determine if the performance and characteristic curves obtained using the clock time control method can be reproduced using a photoelectric sensor under the heating and defrosting capacity test condition described at KS C 9306. The output voltage of the phototransistor (receiver) and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger, were compared. The results showed that photoelectric sensors can be used as a defrost control method. On-off control timing of the clock time defrosting method was in good agreement with those predicted by the output voltage of the photoelectric sensor.

Measurement and Analysis of Showcase Field Data (쇼케이스의 현장 데이터 측정 및 분석)

  • Shin You-Hwan;Oh Wang-Kyu;Park Ki-Ho;Kim Youngil;Shin Younggy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.436-443
    • /
    • 2005
  • Experimental study was performed to understand the operation of an on-site showcase working in a super discount store. Inlet and outlet temperatures of evaporator, condenser, expansion valve and compressor were measured for both air and refrigerant sides. Electric power consumption of compressors, defrosting heaters, cooling water pumps and etc. were measured. The operating characteristics of the showcase system under various working conditions were analyzed and discussed. During the defrosting process, the air temperature inside the showcase increased to $15^{\circ}C$, which gave harmful effect to the frozen food. The collected data will serve as valuable information for diagnosing and improving the performance of showcases.

Macronutrient Analysis of Human Milk according to Storage and Processing in Korean Mother

  • Kim, Min Hyung;Shim, Kyu Seok;Yi, Dae Yong;Lim, In Seok;Chae, Soo Ahn;Yun, Sin Weon;Lee, Na Mi;Kim, Su Yeong;Kim, Seung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.3
    • /
    • pp.262-269
    • /
    • 2019
  • Purpose: As the importance of breastfeeding has been reinforced, human milk is often stored for practical reasons. Therefore, we evaluated optimal storage and processing methods for human milk from a nutritional standpoint. Methods: Human milk samples were collected between June 2017 and February 2018. Also, data about maternal information were collected. Human milk was analyzed for macronutrients and caloric content. The samples were subdivided into groups for nutrient analysis. The control group (fresh milk) was not stored or processed. The other groups (9 groups) consisted of samples analyzed based on different storage temperatures (room temperature, refrigerated, frozen), defrosting methods (bottle warmer, room temperature thawing, microwave oven), and storage period (1 week, 1 month, 2 months) and compared with the control group. Results: There was no statistically significant difference in the nutrient content of human milk among the collected samples. A significant change in the content of macronutrients in milk samples was observed under storage condition at different temperatures for 1 week with subsequent thawing with bottle warmer compared to fresh milk. Under storage at $-20^{\circ}C$ for 1 week with subsequent thawing with different defrosting methods, a significant change in the content of macronutrients in milk samples was observed compared to fresh milk. After storage at $-20^{\circ}C$ for different periods and thawing with a bottle warmer, a significant change in macronutrient content in milk samples was observed compared to fresh milk regardless of the storage period. Conclusion: Unlike previous guidelines, changes in macronutrient content in milk samples were observed regardless of the method of storing and thawing. Apparently, it is proposed that mothers should feed fresh human milk to their babies without storing.