• Title/Summary/Keyword: Defrosting Pattern

Search Result 6, Processing Time 0.021 seconds

Defrosting Behavior of Fin-Tube Heat Exchanger with PTC Heating Sheet

  • Jhee, Sung;Lee, Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • In this paper, the defrosting characteristics of a PTC heating sheet is investigated by means of a defrosting heat source for the fin-tube heat exchanger in a refrigerator The defrosting characteristics of the PTC heating sheet are examined and compared with those of a conventional electric heater experimentally. It is found that the characteristics of the water draining rate with the defrosting time show a smoothly oscillating pattern when the PTC heating sheet Is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is found to be about 75%, which is about 25% higher than that of the electric heater. Also, the reduction of the defrosting time and the increment of the defrosting efficiency may be obtained by improving the arrangement of the heating elements of the healing sheet. It is shown that the defrosting time of the PTC heating sheet increases linearly with the amount of frost, whereas the defrosting efficiency is nearly constant. When applying the PTC heating sheet to the refrigerating system, one should notice the fact that the defrosting performance of the PTC heating sheet may be degraded due to the repetitive operations.

  • PDF

An experimental study of defrosting behaviors on the fin-tube heat exchanger with PTC heating sheet (PTC 전열시트를 사용한 핀-관 열교환기의 제상 특성에 관한 실험적 연구)

  • Jhee, S.;Lee, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 1999
  • In this work, the defrosting characteristics of PTC heating sheet used as a defrosting heat source of fin-tube heat exchanger in a refrigerator have been experimentally compared with those of conventional electric heater. It is found that the characteristics of water draining rate with defrosting time show smoothly oscillating pattern when PTC heating sheet is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is about 75%, which represents about 25% higher than that of the electric heater. A reduction of defrosting time and an increase of defrosting efficiency may be obtained by improving the arrangement of heating elements of the heating sheet. It is shown that the defrosting time of PTC heating sheet increases linearly with the amount of frost, however the defrosting efficiency is nearly constant. In the application to the refrigerating system, one should notice the fact that the defrosting performance of PTC heating sheet may be defraded due to the repeated operations.

  • PDF

3-D Numerical Simulation of Flows Inside a Passenger Compartment of a Model Vehicle foer Hearting, Air-Conditioning and Defrosting Modes (승용차 탑승부내의 난방, 냉방 및 성애제거 모드에 대한 3차원 유동해석)

  • 허남건;조원국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1993
  • Flows inside a passenger compartment of a 1/5 scale model vehicle have been simulated by using a general purpose FVM code, TURBO-3D. Three HVAC modes of heating, air-conditioning, and defrosting are simulated by defining three different inlets. Comparisons are made with the published experimental and computational results, giving a good agreement. A method of predicting the defrosting contours on the wind shield is also proposed in the present study, which enables design modifications in design stages.

  • PDF

A Study ono the Type-Change of Automotive Register (차내 환기구 형상변화에 대한 연구)

  • Kim, Jong-Won;Youn, Jong-Gap;Bae, Han;Won, Sung-Pil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.123-134
    • /
    • 1999
  • Nowadays since the automobile is regarded as the third living space, comfortable conditions are required in the passenger compartment. The customer's concern on air-conditioning/heating, ventilation and demisting/defrosting performances has been much increased. Both ventilation and demisting /defrosting performances are directly influenced by register location, shape of regist guide vane, ventilation flow rate, air distribution , and air circulation pattern. Diffuse plume of air from the register is desirable not only to maintain comfort when the comfort when the comfortable condition has been satisfied but to improve demisting /defrosting performance. In this study, experimental and numerical investigation about the flow field of six different register vane types were carried out , respectively. The numerical analysis, based upon the $textsc{k}$-$\varepsilon$ turbulence model , was applied to the air flow field. The results show that the shape of register guide vane should be considered as an important design paramter.

  • PDF

Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter (수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구)

  • Youn, Young-Muk;Kader, Md. Faisal;Lee, Kum-Bae;Jun, Yong-Du
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

Numerical Study on the Performance Assessment for Defrost and De-Icing Modes (승용차의 제상 및 성에 제거 성능 평가를 위한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • The heating, ventilating, air conditioning (HVAC) system is a very important part of an automotive vehicle: it controls the microclimate inside the passenger's compartment and removes the frost or mist that is produced in cold/rainy weather. In this study, the numerical analysis of the defrost duct in an HVAC system and the de-icing pattern is carried out using commercial CFX-code. The mass flow distribution and flow structure at the outlet of the defrost duct satisfied the duct design specification. For analyzing the de-icing pattern, additional grid generation of solid domain of ice and glass is pre-defined for conductive heat transfer. The flow structure near the windshield, streakline, and temperature fields clearly indicate that the de-icing capacity of the given defrost duct configuration is excellent and that it can be operated in a stable manner. In this paper, the unsteady changes in temperature, water volume fraction, and static enthalpy at four monitoring points are discussed.