• 제목/요약/키워드: Defroster nozzle

검색결과 5건 처리시간 0.027초

성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향 (Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System)

  • 김덕진;이지근
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구 (Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter)

  • 윤영묵;;이금배;전용두
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

자동차 전면유리의 제상시스템 설계를 위한 3차원 비정상 수치해석 (3D Unsteady Numerical Analysis to Design Defrosting System of Automotive Windshield Glass)

  • 강신형;이진호;변주석
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.1-8
    • /
    • 2007
  • The present research is based upon the numerical analysis of a car windshield in order to represent the optimum design guide to improve the overall defrosting performance of the system. First, the control factors that highly affect the defrosting performance of a car windshield are chosen and afterwards, the optimum variables of each control factor are extracted out to analyze its performance. The main control factors for this research are respectively, the air injection angle of a defroster nozzle, the height of a nozzle outlet, and the ratio of the width to the height of a nozzle outlet. For such case when the air inlet angle is relatively small, the flow near the vicinity of the inner face of a windshield tends to expand. As a consequence, the heat transfer rate through the windshield decreases. Also, the height of a nozzle outlet is recommended to maintain its size to minimum. However, when the ratio mentioned before is designed less than unity, the defrosting performance decreases.

자동차 전면유리 제상 메커니즘의 수치해석 연구 (A Numerical Study of a Vehicle Windshield Defrosting Mechanism)

  • 강승재;전용두;이금배
    • 에너지공학
    • /
    • 제19권3호
    • /
    • pp.151-155
    • /
    • 2010
  • 자동차 전면유리를 통한 적당한 가시거리의 확보와 제상 시간은 주요 설계 요소들이다. 이런 요소들의 성능을 향상시키기 위해, HVAC 시스템에서 생성되는 유체의 흐름과 열전달 특성을 이해하는 것이 필요하다. 제상 노즐의 성능을 조사하기 위해 수치해석을 수행하였다. 본 연구에서는 현재 디자인의 모순과 제상 메커니즘의 개선방법을 보여주고 있다. 수치해석 결과 현재 부착된 제상 노즐로는 최대 공기흐름이 전면유리 하단부에서 최대 공기흐름이 나타나고 있으며, 이는 만족스럽지 못한 가시거리를 확보하게 된다. 제상 노즐의 분사 각도가 45도일때 탁월한 제상성능을 보여주고 있다. 수치해석 결과들은 NHTSA에서 정한 규정들을 만족시킨다.

자동차 내부 열유동해석 및 전방유리면의 해빙 전산해석 (NUMERICAL ANALYSIS OF THERMAL FLOW OF CABIN INTERIOR AND DE-ICING ON AUTOMOBILE GLASS)

  • 송동욱;박원규;장기룡
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.75-80
    • /
    • 2005
  • The present work was undertaken to numerically analyze the defrosting phenomena of windshield glass. In order to analysis the phase change from frost to water on windshield glass by discharging hot air from a defroster nozzle, the flow and the temperature field of the cabin interior, the heat transfer through the windshield glass, and the phase change of frost should be solve simultaneously. In the present work, the flow field was obtained by solving 3-D incompressible Navier-Stokes equations, and the temperature field was computed from the incompressible energy equation. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change of the driven cavity were calculated. The calculation showed a good agreement with other numerical results. Then, the present code was applied to the defrosting problem of a real automobile, and a good agreement with the experimental data was also obtained.

  • PDF