• 제목/요약/키워드: Defrost Nozzle

검색결과 11건 처리시간 0.022초

자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구 (Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle)

  • 박원규;배인호
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향 (Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System)

  • 김덕진;이지근
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

차실내 Defrost 노즐 분류의 충돌각 변화에 따른 유동특성에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics with the Impinging Angles of Defrost Nozzle Jet Inside a Vehicle Passenger Compartment)

  • 김덕진;김현주;노병준;이지근
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.1024-1032
    • /
    • 2007
  • The flow characteristics with the impinging angles of defrost nozzle jet inside a commercial vehicle passenger compartment were investigated experimentally by using the two-dimensional duct-nozzle model. The shape of the nozzle contraction was designed according to the curved line of cubic equation to the vertical plan of the flow direction. The impinging angles, defined as the angle between nozzle axis and a vertical line to the windshield, were varied from the $0^{\circ}\;to\;80^{\circ}$. The mean velocity distributions, the half-widths, and the momentum distributions with the cases of both the free jet and the impinging jet onto the dummy windshield were measured. The impinging jet flows similarly with wall jet from $X/b_o=20$, and the impinging angle has an effect on the half-width of the impinging jet. The momentum distributions onto the windshield increased with the increase of impinging angle, and then their inflection point was observed around the impinging angle of $60^{\circ}$.

전기자동차 전면유리 제상성능 개선을 위한 전산수치 해석 (Numerical Analysis for Improvement of Windshield Defrost Performance of Electric Vehicle)

  • 김현일;김재성;김명일;이재열
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.477-484
    • /
    • 2019
  • 차량에 거주하는 시간이 증가하면서 탑승자는 차량의 높은 주행성능과 더불어 쾌적하고 안정성 높은 승차 환경을 원하고 있다. 자동차 전면유리 제상성능은 운전자의 안전운전을 위해 필수적으로 요구되는 성능 중 하나이다. 자동차의 전면유리의 성에 제거 성능을 향상시키기 위해서는 제상 노즐의 형상과 같은 관련 요소들을 적절하게 설계하여야 한다. 본 논문에서는 소형 전기자동차의 제상성능 개선을 위하여 CFD 기반의 전산수치해석을 수행하였다. 자동차 전면유리에 뜨거운 공기를 분사하는 제상 노즐과 가이드 베인의 각도를 변경하면서 제상 성능해석을 수행하였다. 전산수치해석 결과, 제상노즐 각도 $70^{\circ}$ 및 가이드 베인 설치 각도 $60^{\circ}$인 경우가 가장 우수한 제상성능을 보이는 것으로 분석되었다. 해석결과를 바탕으로 제상노즐과 가이드 베인을 제작하여 제상실험을 수행하였으며, 해석결과와 실험결과가 매우 유사함을 확인할 수 있었다. 또한 실험결과, 자동차 전면유리의 성에가 20분 이내 80% 제거됨을 확인 할 수 있어, FVMSS 103 규정을 만족하는 제상성능을 확보한 것으로 판단된다.

CFD를 이용한 Window Defrosting 평가 (The evaluative study of window defrost using Computational Fluid Dynamics)

  • 이인수;임효남;최재웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.179-182
    • /
    • 2011
  • The purpose of this study is to evaluate a defrost model for the possibility of defrosting on wheelhouse window and the heat capacity if defrosting nozzle by using the commercial CFD solver FLUENT. A detailed simulation model has been created which contains the defrosting nozzle, window and the interior/exterior forced convection boundary. In this numerical study, the heat and mass transfer coupled during defrosting and investigated the defrost time for different hot gas temperature, external wind speed and temperature condition.

  • PDF

Defrost nozzle의 토출 공기에 의한 승용차 실내 유동장 및 온도장 해석 (3-D Numerical analysis of flow and temperature field of automobile cabin by discharged air from defrost nozzle)

  • 강규태;박금성;박원규;장기룡
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.25-32
    • /
    • 2002
  • The velocity and temperature profiles in the cabin of the automobile affect greatly the comfortableness of passengers. In this paper, the three dimensional flow and temperature analysis in the cabin of real automobile have been peformed. The three dimensional Navier-Stokes equation solver was validated by comparing with the other numerical data of a 1/5 scale model. The temperature field of cavity was also analyzed for the validation of energy equation solver. After the code validation, the numerical analysis of real field of flow and temperature of an automobile was peformed and the present result provides the insight of flow and temperature field of the inside of cabin.

Defrost nozzle의 영향을 고려한 3차원 승용차 실내 유동 및 온도 해석 (3-D Numerical analysis of flow and temperature field in the cabin of the automobile with defrost nozzle discharged air)

  • 강규태;배인호;황지은;박원규;장기룡
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.31-36
    • /
    • 2001
  • The velocity and temperature profiles in the cabin of the automobile affect greatly to the comfort of the passenger. In this paper, the three dimensional flow and temperature analysis in the cabin of the automobile which is geometrically complicated was performed to investigate and predict the velocity and temperature profile. The three dimensional Navier-Stokes code used in this case was validated by performing of a 1/5 experimental scale model vehicle flow anal)rsis successfully. The temperature field of cavity was analyzed for Energy-equation code validation. The comparison of the results are made with the polished computational data and give a coincided one.

  • PDF

Different injection angle에 따른 자동차 전면 유리 제상성능 연구 (The study of defrosting performance on automobile Windshield through different injection angle)

  • 강휴구;이금배;카더파이샬;오규남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2454-2459
    • /
    • 2008
  • The objective of this paper is to find out the most effective injection angle for the purpose of deicing through SC/Tetra, a commonly used CFD software. Nowadays, vehicles are developed giving priority to an improved interior which emphasizes a pleasant environment and thermal comfort without decreasing the basic performance. Clear visibility is one of the most important phenomenon. The primary factors which affect the efficiency of deicing are 3D geometry of Defrost Nozzle, the inlet velocity and temperature of the flow and the injection angle. However in this paper, all these parameters are optimized by changing the injection angle. A wide range of injection angle from 5 degree to 50 degree have been considered for analysis. A very good defrosting performance has been achieved with 45 degree injection angle which can satisfy the condition of NHTSA.

  • PDF

FLOW AND TEMPERATURE ANALYSIS WITHIN AUTOMOBILE CABIN BY DISCHARGED HOT AIR FROM DEFROST NOZZLE

  • Park, W.G.;Park, M.S.;Jang, K.L.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.139-143
    • /
    • 2006
  • As an automobile tends to be high grade, the needs for more luxurious interior and comfortable HVAC system are emerged. The defrosting ability is another major factor of the performances of HVAC system. The present work is to simulate the flow and the temperature field of cabin interior during the defrost mode. The three-dimensional incompressible Navier-Stokes equations and energy equation were solved on the multi blocked grid system by the iterative time marching method and AF scheme, respectively. The present computations were validated by the comparison of the temperature field of a driven cavity and velocity field of 1/5 model scale of an automobile. Generally good agreements were obtained. By the present computation, the complicated features of flow and temperature within the automotive cabin interior could be well understood.

공기분사식 제상장치 개발에 관한 실험적 연구 (Experimental Study for Development of Air Eject Defrost Equipment)

  • 한인근;김창영;김재돌;윤정인
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.277-284
    • /
    • 2001
  • One of the problems in a refrigerator operation is the frost formation on a cold surface of the evaporator. The frost layer is formed by the sublimation of water vapor when the surface temperature is below the freezing point. This frost layer is usually porous and formed on the cold surface of the evaporator. The frost layer on the surface of a evaporator will make side effect such as thermal resistance. However, these important factors have not been used in determining the defrosting period. Therefore, the proper defrosting operation period based on the new defrosting method is very important, and make a comparison between conventional method like electric defrost and new method in compression work, evaporation pressure, evaporation temperature.