• Title/Summary/Keyword: Deformed shape

Search Result 442, Processing Time 0.029 seconds

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations

  • Tufekci, Ekrem;Arpaci, Alaeddin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.131-150
    • /
    • 2006
  • Exact analytical solutions for in-plane static problems of planar curved beams with variable curvatures and variable cross-sections are derived by using the initial value method. The governing equations include the axial extension and shear deformation effects. The fundamental matrix required by the initial value method is obtained analytically. Then, the displacements, slopes and stress resultants are found analytically along the beam axis by using the fundamental matrix. The results are given in analytical forms. In order to show the advantages of the method, some examples are solved and the results are compared with the existing results in the literature. One of the advantages of the proposed method is that the high degree of statically indeterminacy adds no extra difficulty to the solution. For some examples, the deformed shape along the beam axis is determined and plotted and also the slope and stress resultants are given in tables.

Closed form interaction surfaces for nonlinear design codes of RC columns with MC 90

  • Barros, M.H.F.M.;Ferreira, C.C.;Barros, A.F.M.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.55-77
    • /
    • 2005
  • The closed form solution of the equilibrium equations in the ultimate design of reinforced concrete sections under biaxial bending is presented. The stresses in the materials are described by the Model Code 1990 equations. Computation of the integral equations is performed generally in terms of all variables. The deformed shape of the section in the ultimate conditions is defined by Heaviside functions. The procedure is convenient for the use of mathematical manipulation programs and the results are easily included into nonlinear analysis codes. The equations developed for rectangular sections can be applied for other sections, such as T, L, I for instance, by decomposition into rectangles. Numerical examples of the developed model for rectangular sections and composed sections are included.

Dynamic analysis of structures in frequency domain by a new set of Ritz vectors

  • Aliasghar Arjmandi, S.;Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.703-716
    • /
    • 2011
  • The accurate dynamic analysis of structures is usually performed by a fine finite element discretization with very large number of degrees of freedom. Apart from modal analysis, one can reduce the number of final equations by assuming the deformed shape of the structure as a linear combination of independent Ritz vectors. The efficiency of this method relies heavily on the vectors selected. In this paper, a new set of Ritz vectors is proposed. It is primarily proved that these vectors are linearly independent. Subsequently, various two and three-dimensional examples are analyzed based on the proposed method. In each case, the results are compared with the ones obtained based on usual Ritz and modal analysis methods. It is finally concluded that the proposed method is very effective and efficient method for dynamic analysis of structures in frequency domain.

Flexural behaviour of reinforced concrete beams with silica fume and processed quarry fines

  • Priya, T. Shanmuga;Senthilkumar, R.
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 2020
  • This paper studies the influence of silica fume and Processed Quarry Fines (PQF) on the flexural behaviour of the reinforced concrete beams by experimental as well as numerical studies. The study has been shown that the incorporation of PQF can significantly increase the stiffness and the flexural strength of reinforced HPC beams. Also, the ultimate strength of specimens prepared with the 10% silica fume and 100% PQF are higher compared to conventional reinforced concrete specimen. Numerical analysis is performed to find the ultimate strength of HPC beams to compare with experimental results. Nonlinear behaviour of steel reinforcing bars and plain concrete is simulated using appropriate constitutive models and experimental results. The results indicate that the ultimate strength, deformed shape and crack patterns of reinforced HPC beams obtained through the Finite Element Analysis (FEA) are confirming with the experimental results.

Numerical Study of Heat Transfer Associated with Droplet Impact (액적 충돌에 동반된 열전달에 관한 수치적 연구)

  • Kim, Sung-Il;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1897-1902
    • /
    • 2004
  • Numerical analysis of the heat transfer associated with droplet impact on a hot solid surface is performed by solving the mass, momentum and energy equations for the liquid-gas region. The deformed droplet shape is tracked by a level set method which is modified to achieve volume conservation during the whole calculation procedure and to include the effect of contact angle at the wall. The numerical method is validated through test calculations for the cases reported in the literature. Based on the numerical results, the effects of advancing/receding contact angle, impact velocity and droplet size on the heat transfer during droplet impact are quantified.

  • PDF

A Study on Thermal Analysis in Ventilated Disk Brake by FEM (FEM을 이용한 벤틸레이티드 디스크 브레이크 열응력 해석에 관한 연구)

  • Kim, Sung-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.544-549
    • /
    • 2009
  • Thermal brake judder caused by the high friction heat of the brake disk. Hot thermal judder makes serious problems such as to be unstability to drivers or to decrease braking force of automobile. Because thermal judder vibration makes high vibration occurrence and thermal deformation of brake disk. Therefore it Is necessary to reduce or eleminate thermal Judder phenomenon by understanding and investigation. This paper introduces the thermal deformation arising from friction heat generation in braking and proposes the FEM analysis to predict the distribution of temperature and thermal deformation. the results of the FEM analysis show the deformed shape and temperature distribution of the disk brake. The optimization is performed to minimize the thermal judder of ventilated disc brake that is induced by the thermal deformation of the disk brake.

  • PDF

Modeling of 3D object shape based on Superquadrics and Z-Buffer Algorithm

  • Kim, Dae-Hyun;D.H. Hyeon;Lee, S.H.;Park, J.S.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1088-1091
    • /
    • 2000
  • Superquadrics can represent various and complex 3D objects with only some parameters(size, position, deformation etc.). So if we use both superquadrics and deformed superquadrics, we can also represent more realistic 3D objects which are existed in real world. In this paper we use the z-buffer algorithm and stencil buffer together because this is very useful when the superquadric primitives are combined. The fundamental ideas are illustrated with a number of tables and figures.

  • PDF

A Study on the Forming Limit Diagram Tests of Metal Sheets (금속 판재의 성형한계도 시험법에 관한 연구)

  • Jang, Uk-Kyeong;Jang, Yun-Ju;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.49-57
    • /
    • 2010
  • A forming limit diagram (FLD) defines the extent to which specific sheet material can be deformed by drawing, stretching or any combination of those two. To determine the forming limit curve (FLC) accurately, it is necessary to perform the tests under well-organized conditions. In this study, the influence of several geometric or process parameters such as the blank shape and dimensions, strain measuring equipments, test termination time, forming speed and lubricants on the FLC is investigated.

  • PDF