• Title/Summary/Keyword: Deformed layer

Search Result 106, Processing Time 0.028 seconds

Mechanical and Electrical Reliability of Silver Nanowire Film on Flexible Substrate (유연기판 위에 제작된 Silver Nanowire 필름의 기계 및 전기적 신뢰성 연구)

  • Lee, Yo Seb;Lee, Won Jae;Park, Jin Yeong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.93-99
    • /
    • 2016
  • In this paper, we investigated the mechanical and electrical reliability of silver nanowire (AgNW) films. In particular, the durability and reliability of AgNW films were studied when the AgNW film was subjected to the bending deformation under current flow. The electrical durability of AgNW was evaluated by observing changes in heat generation and current density occurring in AgNW through voltage and current tests. The AgNW film showed a constant resistance change up to a bending radius of 2 mm and 200,000 cycles in the bending fatigue tests. The over-coating layer has an effect of improving the durability of the AgNW film. In the case of AgNW with the over-coating layer, heat was uniformly dissipated on the surface of AgNW film, whereas in the case of AgNW film without the over-coating layer, heat was generated locally. In the bending test under the current flow, the current density of the AgNW film was continuously decreased up to 52.4%. During bending, the AgNW was deformed due to mechanical deformation such as tensile, bending and sliding of the AgNW, consequently contact resistance of the AgNW was increased, leading to a electrical breakdown of AgNW by Joule heating. It was found that the application of the over-coating layer can improve the electrical and mechanical reliability of the AgNW film.

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Degradation Properties of ZnO Surge Arresters Due to Lightning Impulse Currents (뇌임펄스전류에 의한 ZnO 피뢰기의 열화특성)

  • Lee, Su-Bong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • This paper describes the degradation properties of ZnO surge arresters impressed by lightning impulse currents. To investigate the deterioration behaviors of ZnO surge arresters due to lightning surges, the 8/20[${\mu}s$], 2.5[kA] standard lightning impulse currents were injected to the ZnO surge arrester under test. The power frequency AC and DC leakage currents flowing through the ZnO surge arresters with and without the injection of lightning impulse currents were measured. As a result, the leakage currents are increased and the asymmetry of the AC leakage current is pronounced as the number of injection of the impulse current increases. The ZnO grain of the surge arrester without the injection of lightning surges are uniform but the ZnO grain of the ZnO surge arrester with the injection of lightning impulse currents are deformed. Also, it was found that the decrease of the $Bi_2O_3$ due to the lightning impulse current leads to the lack of grain boundary layer and the current concentrated by the lack of grain boundary layer play an important role to degrade nonlinear property of ZnO surge arrester blocks.

Frictional Anisotropy of CVD Bi-Layer Graphene Correlated with Surface Corrugated Structures

  • Park, Seonha;Choi, Mingi;Kim, Seokjun;Kim, Songkil
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.235-240
    • /
    • 2022
  • Atomically-thin 2D nanomaterials can be easily deformed and have surface corrugations which can influence the frictional characteristics of the 2D nanomaterials. Chemical vapor deposition (CVD) graphene can be grown in a wafer scale, which is suitable as a large-area surface coating film. The CVD growth involves cooling process to room temperature, and the thermal expansion coefficients mismatch between graphene and the metallic substrate induces a compressive strain in graphene, resulting in the surface corrugations such as wrinkles and atomic ripples. Such corrugations can induce the friction anisotropy of graphene, and therefore, accurate imaging of the surface corrugation is significant for better understanding about the friction anisotropy of CVD graphene. In this work, the combinatorial analysis using friction force microscopy (FFM) and transverse shear microscopy (TSM) was implemented to unveil the friction anisotropy of CVD bi-layer graphene. The periodic friction anisotropy of the wrinkles was measured following a sinusoidal curve depending on the angles between the wrinkles and the scanning tip, and the two domains were observed to have the different friction signals due to the different directions of the atomic ripples, which was confirmed by the high-resolution FFM and TSM imaging. In addition, we revealed that the atomic ripples can be easily suppressed by ironing the surface during AFM scans with an appropriate normal force. This work demonstrates that the friction anisotropy of CVD bilayer graphene is well-correlated with the corrugated structures and the local friction anisotropy induced by the atomic ripples can be controllably removed by simple AFM scans.

Topological phase transition according to internal strain in few layer Bi2Se3 thin film grown via a self-organized ordering process

  • Kim, Tae-Hyeon;Park, Han-Beom;Jeong, Gwang-Sik;Chae, Jae-Min;Hwang, Su-Bin;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.272.1-272.1
    • /
    • 2016
  • In a three-dimensional topological insulator Bi2Se3, a stress control for band gap manipulation was predicted but no systematic investigation has been performed yet due to the requirement of large external stress. We report herein on the strain-dependent results for Bi2Se3 films of various thicknesses that are grown via a self-organized ordering process. Using small angle X-ray scattering and Raman spectroscopy, the changes of d-spacings in the crystal structure and phonon vibration shifts resulted from stress are clearly observed when the film thickness is below ten quintuple layers. From the UV photoemission/inverse photoemission spectroscopy (UPS/IPES) results and ab initio calculations, significant changes of the Fermi level and band gap were observed. The deformed band structure also exhibits a Van Hove singularity at specific energies in the UV absorption experiment and ab initio calculations. Our results, including the synthesis of a strained ultrathin topological insulator, suggest a new direction for electronic and spintronic applications for the future.

  • PDF

Experimental studies on the fretting wear of domestic steam generator tubes (국내 증기발생기 전열관 마열에 대한 실험적 연구)

  • Lee, Yeong-Ho;Kim, Hyeong-Gyu;Kim, In-Seop
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.304-309
    • /
    • 2002
  • Fretting wear test in room temperature water was performed to evaluate the wear coefficient of Inconel 600,690 (Pressurized Water Reactor, PWR) and Alloy 800 (CANadian DeuteriumUranium, CANDU) steam generator (SG) tubes against ferritic and martensitic stainless steels. The main focus is to compare the wear behaviors between Alloy 800 and Inconel alloys. Test conditions are $10{\sim}30N$ of normal load, $200{\sim}450{\mu}m$ of sliding amplitude and 30Hz of frequency. The result indicated that the wear rate of Alloy 800 was higher than those of Inconel 690 at various test condition such as normal loads, sliding amplitudes etc. From the results of SEM observation, there was little evidence of plastic deformation layer that were dominantly formed on the worn surfaces of Inconel 690. Also, wear particles in Alloy 800 were released from contacting asperities deformed by severe plastic flow during fretting wear. Main cause of wear rate between Alloy 800 and Inconel 690 may be due to the difference of hardness between martensitic and ferritic stainless steel. The wear rate and wear mechanism of two tubes in room temperature water are discussed.

  • PDF

Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates (압전적층판의 열-압전-탄성 동적 비선형 작동특성)

  • Oh, Il-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.836-842
    • /
    • 2005
  • Nonlinear dynamic characteristics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi-field layer-wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap-through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap-through piezoelectric potentials and the load-path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap-through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap-through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

Fabrication of Fe coated Mg Based Desulfurization Powder by Mechanical Alloying Process (기계적 합금화 공정에 의한 Fe가 코팅된 Mg 탈황 분말 제조 연구)

  • Song, Joon-Woo;Guillermo, Otaduy;Chun, Byong-Sun;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2012
  • In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 ${\mu}m$ at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.

Extrusion Behavior of Gas Atomized Mg Alloy Powders (가스분무 Mg-Zn-Y 합금분말의 압출거동)

  • Chae, Hong-Jun;Kim, Young-Do;Lee, Jin-Kyu;Kim, Jeong-Gon;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.251-255
    • /
    • 2007
  • This work is to report not only the effect of rapid solidification of $MgZn_{4.3}Y_{0.7}$ alloys on the micro-structure, but also the extrusion behavior on the materials properties. The average grain size of the atomized powders was about $3-4{\mu}m$. The alloy powders of $Mg_{97}Zn_{4.3}Y_{0.7}$, consisted of I-Phase (Icosahedral, $Mg_{3}Zn_{6}Y_{1}$) as well as Cubic structured W-Phase ($Mg_{3}Zn_{3}Y_{2}$), which was finely distributed within ${\alpha}-Mg$ matrix. The oxide layer formed along the Mg surface was about 48 nm in thickness. In order to study the consolidation behavior of Mg alloy powders, extrusion was carried out with the area reduction ratio of 10:1 to 20:1. As the ratio increased, fully deformed and homogeneous microstructure could be obtained, and the mechanical properties such as tensile strength and elongation were simultaneously increased.

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.