• Title/Summary/Keyword: Deformation-related variable

Search Result 23, Processing Time 0.021 seconds

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.

Investigating spurious cracking in finite element models for concrete fracture

  • Gustavo Luz Xavier da Costa;Carlos Alberto Caldeira Brant;Magno Teixeira Mota;Rodolfo Giacomim Mendes de Andrade;Eduardo de Moraes Rego Fairbairn;Pierre Rossi
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2023
  • This paper presents an investigation of variables that cause spurious cracking in numerical modeling of concrete fracture. Spurious cracks appear due to the approximate nature of numerical modeling. They overestimate the dissipated energy, leading to divergent results with mesh refinement. This paper is limited to quasi-static loading regime, homogeneous models, cracking as the only nonlinear mode of deformation and cracking only due to tensile loading. Under these conditions, some variables that can be related to spurious cracking are: mesh alignment, ductility, crack band width, structure size, mesh refinement and load increment size. Case studies illustrate the effect of each variable and convergence analyses demonstrate that, after all, load-increment size is the most important variable. Theoretically, a sufficiently small load increment is able to eliminate or at least alleviate the detrimental influence of the other variables. Such load-increment size might be prohibitively small, rendering the simulation unfeasible. Hence, this paper proposes two alternatives. First, it is proposed an algorithm that automatically find such small load increment size automatically, which not necessarily avoid large computations. Then, it is proposed a double simulation technique, in which the crack is forced to propagate through the localization zone.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

A Study on the Mechanical Properties with the Strain rate and Strain for Aluminum 6061 Alloy in Hot Forging (알루미늄 6061 합금의 열간단조시 변형율속도 및 변형율에 따른 기계적 성질에 관한 연구)

  • 김정식;이영선;김용조;이정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.154-158
    • /
    • 2002
  • The mechanical properties of Al 6061 excluded bar were deformed in high temperature with the variable deformation conditions and characterized by the tensile test. Three types of different strain rate were experimentally performed by using hydraulic press, crank press and hammer and two types of the nominal strain 0.5 and 0.8 were achieved. To decide optimum forging process, the relationship among the strain rate, strain and mechanical properties was explained by analyzing the microstructures of the forged and heat heated parts. The strength was deeply related with the strain rate due to the dynamic recrystallization (DRX) in hot forging, and the best forging condition was presented in Al 6061 alloy.

  • PDF

Analysis of the fracture of brittle elastic materials using a continuum damage model

  • Costa Mattos, Heraldo S.;Sampaio, Rubens
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.411-427
    • /
    • 1995
  • The most known continuum damage theories for brittle structures are suitable to model the degradation of the material due to the deformation process and the consequent initiation of a macro-crack. Nevertheless, they are not able to describe the propagation of the crack that leads, eventually, to the breakage of the structure into parts that undergo rigid body motion. This paper presents a theory, formulated from formal arguments of Continuum Mechanics, that may describe not only the degradation but also the fracture of elastic structures. The modeling of such a discontinuous phenomenon through a continuous theory is possible by taking a cohesion variable, related with the links between material points, as an additional degree of kinematical freedom. The possibilities of the proposed theory are discussed through examples.

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

Correlation Analysis between Rut Resistance and Deformation Strength for Superpave Mixtures (수퍼페이브 혼합물의 소신변형저항성과 변형강도와의 상관성분석)

  • Kim, K.W.;Kim, S.T.;Kwon, O.S.;Doh, Y.S.
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.45-53
    • /
    • 2004
  • This study dealt with correlation analysis between deformation strength and rut resistance of asphalt concretes based on binder grade in Superpave specification with changing submerging time. Currently, Mashall mix design is known to have little correlation with rutting related performance. Therefore, some agencies started to use the Superpave method for asphalt mix design. But this method has a weak point in that it can not distinct mechanical property of the asphalt mixtures designed. For solution of these problem, this study used deformation strength, $S_D$, of Kim test which is a new approach under development for finding property which represents rut resistance characteristics of asphalt mixtures under static loading. This study used two aggregates from two regions and five PG asphalt binders. Final rut depth (DR) and dynamic stability (DS) from wheel tracking (WT) test were obtained. and $S_D$ value of the same mixture specimen which was made by gyratory compactor was obtained using loading head [4(1.0)]. Three submerging times 30min, 40min, 50min were used as a test variable at $60^{\circ}C$. Correlation analysis of DR and DS with $S_D$ were performed based on PG grade. It was found out that the $S_D$ has a high correlation with DR and DS of superpave mixtures. The highest $R^2$ was found from the $S_D$ values of 30min. submerged specimen.

  • PDF

A Study on Korean Women's Bedding Consumption Status, Purchase Behavior and Degree of Satisfaction (여성의 침구 구매 행동 및 만족도에 관한 연구)

  • Cho, Chu-Hee;Kim, Chil-Soon
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.3
    • /
    • pp.423-435
    • /
    • 2010
  • The purpose of this study was to observe the current consumption of bedding products, purchase behavior, and to compare between purchase criteria and degree of satisfaction after the purchase. Independent variables are age, consumer's knowledge and involvement about the bedding materials. This study can contribute for bedding product marketing strategies and design development. We used questionnaires that were distributed to 500 females aged in 20s to 50s, using stratified sampling method. Only 457 reliable questionnaires were selected for statistical analysis. Data were analyzed statistically through frequencies, paired t-test, ANOVA, Dunnett T3, Chi-test, using SPSS (Version 12.0). The results of this study are as follows. The types of bedroom was significantly associated with age variables. Women in 20's to 30's were using the mixture of Ondol and bed(chimdaie), while 40's to 50's women were using bed for all their rooms. The usage of filling material for the comforter(ibul) was significantly associated with the age group. 20's to 30's age group preferred synthetic fibers for the filling, while 40 to 50's women preferred cotton fibers. Generally, the most of people used quilted comforter and they used cotton material as filling materials of comforters. As to purchase behavior, the most frequent place of purchase was specialty store of bedding products, and the highest percentage of motivation for purchase was "deformation after the use/throwing away". Purchase motivation for bedding was related with the age variable and the clusters based on the knowledge of bedding materials. We analysed the comparison test purchase criteria and satisfaction. In all attributes except brand image, people evaluated lower in satisfaction after purchase than in criteria before purchase.

Buildability for Concrete 3D Printing According to Printing Time Gap (콘크리트 3D프린팅의 적층시간 간격에 따른 적층 성능)

  • Lee, Yoon Jung;Song, Jin-Soo;Choi, Seung-Ho;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.131-136
    • /
    • 2019
  • Buildability of fresh concrete, a key element of Concrete 3D printing, is the ability to build filaments at a desirable height without excessive deformation or collapse. Buildability is closely related to yield stress, and the higher the yield stress, the better. Also, the shear stress of fresh concrete increases as it hardens over the time after extruded, and consequently the buildability increases. Therefore, in concrete 3D printing, proper time gaps between printed layers (Printing Time Gap, PTG) are required to ensure the buildability of fresh concrete. As the PTG increases, the buildability increases; however, an excessive PTG reduces the bond performance between the printed layers, and the extrudability can be lowered as the printing time increases. In this research, therefore, 3D printing experiments were conducted with the variable of PTG to examine the buildability of 100 MPa-high strength concrete. In addition, a pseudo-layer loading method was applied to simulate the buildability test for 3D concrete printing and its applicability was examined.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF