• Title/Summary/Keyword: Deformation recovery

Search Result 161, Processing Time 0.026 seconds

Effect of Rolling Draughts on the Evolution of Through-Thickness Textures in Aluminum 5000X Sheet (알루미늄 5000계 판재에서 두께 층에 따른 집합조직 형성에 미치는 압연 패스당 변형률의 영향에 관한 연구)

  • 김현철;김용희;허무영
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.193-202
    • /
    • 2000
  • The influence of rolling draughts on the formation of through-thickness textures in aluminum 5000X sheet was investigated by X-ray texture measurements and microstructure observations. In order to intensify the deformation inhomogeneities, cold rolling was performed without lubrication. Applying a large draught gave rise to the formation of the shear texture at the surface, whereas a normal plane strain testure formed at the surface after deformation with a small draught. The orientation density along the $\beta$-fiber orientations which developed in the center layer of the rolled specimen was also dependent on the strain gradients in a roll gap. Upon annealing, the deformed substructure of sample surfaces was transformed into a fine grained recrystallized microsturcture through extended recovery reaction. However, coarse grains developed after the discontinuous recrystallization which gave rise to the development of the Cube-texture.

  • PDF

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nano-scratch Process (나노스크래치 공정을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석)

  • 이정우;강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation scratch test was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled as a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. Variables of the nanoindentation scratch test analysis are scratching speed, scratching load, tip radius and tip geometry. The nano-indentation scratch tests were performed by using the Berkovich pyramidal diamond indenter. Comparison between the experimental data and numerical result demonstrated that the FEM approach can be a good model of the nanoindentation scratch test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

A Study on the Mechanical Properties of Knit Fabric Using 3D Printing -Focused on PLA, TPU Filament- (3D프린팅을 이용한 편성물의 역학적 특성 연구 -PLA, TPU 필라멘트를 중심으로-)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.22 no.4
    • /
    • pp.93-105
    • /
    • 2018
  • Using FDM 3D printing, yarn shape and composition were modeled and 3D printed with PLA and TPU filaments currently used for apparel. Based on this, mechanical characteristics were measured to determine 3D printing yarn according to type of filaments in the 3D printed output and deformation and recovery characteristics due to differences in structure type. As a result of examining tensile and shear characteristics of PLA and TPU 3D printing compiles, TPU overall was measured with significantly lower stress than PLA. This is due to high elasticity of TPU's character, revealing that it has better flexibility than PLA. In addition, during deformation due to external forces, the more freedom between the head and foot parts of the loop, and the lower the force associated with each other, the more flexible it is. TPU revealed that it was easier to tension and recovery from tensile deformation than PLA, indicating potential for clothing materials using 3D printing. If high-molecular materials, such as PLA flexibility, it is likely to provide some flexibility through development of styles, including degree of freedom in modeling. Based on this, we provide basic data for developing 3D printing textures that can be satisfied with textile for apparel.

The Deformation of Knitted Cotton Fabrics with/without Spandex During Laundering (스판덱스 혼합 면 편성물과 면 편성물의 세탁에 따른 변형 비교)

  • Chung, Haewon;Kim, Ku-Ja;Kim, Mikyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.2 s.150
    • /
    • pp.296-305
    • /
    • 2006
  • This study evaluate the effect of laundering on the deformation of knitted spandex/cotton fabrics compared with that of knitted cotton fabrics. Commercial knitted spandex/cotton and knitted cotton fabrics for T-shits were laundered in a drum-type washing machine and dried in a tumble dryer. Wale spirality, shrinkage, elastic recovery and surface contour of knitted fabrics were investigated under different laundering conditions: washing temperature, presoaking time and washing cycles. Knitted spandex/cotton fabrics had a lower angle of spirality than knitted cotton fabrics. After the first washing cycle, the angles of spirality of all the fabrics had decreased greatly. Knitted cotton fabric of low density deformed more than that of higher density. Knitted spandex/cotton. fabric of low density shrank less, because of the greater extension given during heat-set. Permanent elongation length at the 80$\%$ extension was longer than at the 50$\%$ extension, and the knitted spandex/cotton fabric which was expanded greatly during heat-set had a lower elastic recovery rate. The surface appearance of the knitted spandex/cotton fabrics was worsl~ than that of the knitted cotton fabrics before laundering and after repeated laundering, because of the much protruded cotton fibers from the yarns.

A Study on the Time-Dependent Deformation Behaviors of PMMA in Nanoindentation Process for Hyperfine Pit Structure Fabrication (극미세 점 구조체 제작을 위한 나노압입 공정에서 PMMA의 시간의존적 변형거동에 관한 연구)

  • Kim Hyun-Il;Kang Chung-Gil;Youn Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.62-70
    • /
    • 2005
  • The nanoindenter and AFM have been used for nanofabrication, such as nanolithography, nanowriting, and nanopatterning, as well as measurement of mechanical properties and surface topology. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is very important to make indents of desired morphology (shape, size and depth). Indents of different shapes can be obtained by using indenters of different geometries such as a cube comer and conical and spherical tips. The depth and size of indents can be controlled by making indentations at different indentation loads. However, in case of viscoplastic viscoelastic materials such as polymethylmethacrylate (PMMA) the time dependent deformation (TDD) should also be considered. In this study, the effect of process parameters such as loading rate and hold-time at peak load on the indent morphology (maximum penetration depth, elastic recovery, transient creep recovery, residual depth pile-up height) of PMMA were studied for hyperfine pattern fabrication.

Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel (304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측)

  • 한형기;유연철;김성일
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

Recovery Behaviors of Natural Rubber Composites Thermally Aged in Altering Medium Systems of Air and Water (공기와 물의 교매질 시스템에서 열노화된 천연고무 복합체의 회복 거동)

  • Choi, Sung-Seen;Kim, Ok-Bae
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.181-189
    • /
    • 2013
  • Unfilled, carbon black-filled, and silica-filled natural rubber (NR) composites were aged with a circular deformation at $60-90^{\circ}C$ and the recovery behaviors were investigated. The samples were aged under the altering aging medium systems of air and distilled water every day for 10 days. The order of the recoveries according to the filler systems was unfilled > silica > carbon black. The recoveries of the samples aged in the air to water altering system were greater than those of the samples aged in the water to air altering system. The initial aging medium dominantly influenced the deformation level.

Thermal Properties of Al-Ni-Y Alloy Amorphous Ribbons and High Temperature Deformation Behavior of Al-Ni-Y Alloy Extrudates Fabricated with Amorphous Ribbons (Al-Ni-Y 합금 비정질 리본의 열적 특성 및 리본 압출재의 고온변형 특성)

  • Ko, Byung-Chul;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.333-339
    • /
    • 1998
  • Hot torsion tests were conducted to investigate the high temperature deformation behavior of $Al_{85}Ni_{10}Y_5$ alloy extrudates fabricated with amorphous ribbons. The powder metallurgy routes, hot pressing and hot extrusion were used to fabricate the extrudates. Thermal properties of amorphous ribbons with different thickness as a function of aging temperature were studied by thin film x-ray dif-fraction (XRD) and differential scanning calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature($T_x$)Was ~210${\circ}C$ During the processings of consolidation and extrusion, nano-grained structure(~100 nm) was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the $Al_{85}Ni_{10}Y_5$ alloy annealed at 250${\circ}C$ for 1 hour showed a flow curve of DRV(dynamic recovery) during hot deformation at 400-550${\circ}C$. On the other hand, the $Al_{85}Ni_{10}Y_5$ alloy annealed at 400${\circ}C$ for 1 hour showed a flow curve of DRX(dynamic recrys-tallization) during hot deformation at 450-500${\circ}C$. Also the flow stress and flow strain of the $Al_{85}Ni_{10}Y_5$ alloy extrudate annealed at 400${\circ}C$ were higher than those at 250${\circ}C$.

  • PDF

The High Temperature Deformation Behavior of the Wrought Superalloy 718 (단조용 초내열 718 합금의 고온 변형 거동)

  • Na, Y.S.;Choe, S.J.;Kim, H.M.
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.179-191
    • /
    • 1996
  • In order to understand the high temperature deformation behavior of superalloy 718, a rotating grade 718 alloy has been compression tested to about 0.7 upset ratio at $927{\sim}1066^{\circ}C$ temperature range and $5{\times}10^{-4}{\sim}5{\times}10^0sec^{-1}$ strain rate. The maximum flow stress was increased with increasing strain rate, and similar behavior was observed with decreasing temperature. At low temperature and high strain rates other than $5{\times}10^{-1}sec^{-1}$, strain softening was occurred mainly by dynamic recovery and deformation twinning processes, while at high temperature and low strain rates strain softening was offseted by dynamic recrystallization. At $5{\times}10^{-1}sec^{-1}$, strain hardening was occurred due to work hardening of the dynamic recrystallized grains. Strain rate sensitivity, m, was varied with strain rates. In the case of lower strain rate tests, m was measured as 0.3 and it was observed that the deformation was mainly controlled by dynamic recrystallization. At higher strain rate, m was lowered to 0.1 and the deformation was controlled by the dynamic recovery and the deformation twinning processes.

  • PDF

The Effects of Heat Treatment on Cyclic Deformation of Ni-Ti Shape Memory Alloy (Ti-Ni 형상기억합금의 반복 변형 거동에 미치는 열처리의 영향)

  • 박영철;조용배;오세욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.154-164
    • /
    • 1994
  • In this paper, fatigue testing was carried out under the change of aging time(0.5,1.5.10hrs) by electric heating method which is one of the useful method in the application of Robot's actuator. Fatigue degradation behaviors such as cyclic deformation property, amount of deformation, decrease in recovery and variation of transformation temperature for each specimen were examined closely, and the effect of aging time condition was studied on their fatigue degradation behaviors.

  • PDF