• Title/Summary/Keyword: Deformation Strength

Search Result 2,449, Processing Time 0.032 seconds

Deformation Demand of the Precast Concrete Frame Buildings with Ductile Connection in Moderate Seismic Regions (연성적인 접합부를 가진 프리캐스트 콘크리트 골조건물의 변형수요)

  • 서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.89-98
    • /
    • 1999
  • This paper evaluates nonlinear response characteristics of precast concrete frame buildings. where plastics hinging occurs in the precast connection. Designs were developed for buildings of 5, 10 and 15 stories in hight for moderate seismic risk regions of the U. S. The responses of the buildings were analyzed using DRAIN-2DX and following Nonlinear static analysis procedure of ATC 19. The main variables of the analyses were the strength and stiffness of the connection. Also, for the analysis, the bi-linear response model, developed and inserted into the DRAIN-2DX program by Shan Shi and D. Fouch, was used. With the results of analysis, the deformation demands of the connection of precast concrete frame buildings are proposed by using equal-dissipated energy capacity. It was shown that the strength of the buildings as well as their displacement capacities decreased with the decrease of either the strength or stiffness in the connections. Therefore such changes also require reductions in the response modification factors for such buildings. However, if the precast concrete frame building has plastic hinging in the connection, and has a more ductile connection than the monolithic frame building, then no reduction in R may be necessary. The deformation demand required of the connection to achieve that condition is evaluated and a simple relation is suggested in the paper.

A Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite (마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질)

  • Kim, Young-Hwa;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.

Seismic detailing of reinforced concrete beam-column connections

  • Kim, Jang Hoon;Mander, John B.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.589-601
    • /
    • 2000
  • A simplified analysis procedure utilizing the strut-tie modeling technique is developed to take a close look into the post-elastic deformation capacity of beam-column connections in ductile reinforced concrete frame structures. Particular emphasis is given to the effect of concrete strength decay and quantity and arrangement of joint shear steel. For this a fan-shaped crack pattern is postulated through the joints. A series of hypothetical rigid nodes are assumed through which struts, ties and boundaries are connected to each other. The equilibrium consideration enables all forces in struts, ties and boundaries to be related through the nodes. The boundary condition surrounding the joints is obtained by the mechanism analysis of the frame structures. In order to avoid a complexity from the indeterminacy of the truss model, it is assumed that all shear steel yielded. It is noted from the previous research that the capacity of struts is limited by the principal tensile strain of the joint panel for which the strain of the transverse diagonal is taken. The post-yield deformation of joint steel is taken to be the only source of the joint shear deformation beyond the elastic range. Both deformations are related by the energy consideration. The analysis is then performed by iteration for a given shear strain. The analysis results indicate that concentrating most of the joint steel near the center of the joint along with higher strength concrete may enhance the post-elastic joint performance.

Experimental Study on the Deformation of MLCC Compressed Bar by Quantitative Analysis for Outgas (Outgas 분석을 통한 MLCC Bar 변형률 측정)

  • Kim, Min-Ju;Kim, Jong-Yun;Jeong, Gi-Ho;Park, Chang-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.458-463
    • /
    • 2010
  • MLCC (multi-layer ceramic capacitor) is usually fabricated by lamination of predetermined number of single layers. Often, the state of MLCC before sintering is called the green state, whose strength comes from the adhesion between the dielectric material and the polymer binder. Therefore the lamination of a single layer before sintering can be easily deformed by environment due to the relatively lower strength. After the compression process, which helps single sheets cohereto with adjacent sheets, the MLCC green bar is preheated to resolve the probable internal stress. Unfortunately, unexpected deformation after preheating resulted in problems during cutting of the MLCC green bar. In this study, one of 2 primary hypotheses which were proposed to resolve the unexpected deformation after preheating was examined by quantitative experiment with GC/MS (gas chromatograpy/mass spectrometer). The proportion of deformation caused by DOP evaporation, which was primarily evaporated componet during preheating, to the total deformation of the MLCC green bar was found to be 53%.

Evaluation of Fracture Behavior of SA-516 Steel Welds Using Acoustic Emission Analysis

  • Na, Eui-Gyun;Ono, Kanji;Lee, Dong-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2006
  • The purpose of this study is to evaluate the AE characteristics for the basemetal, PWHT (post-weld heat treatment) and weldment specimens of SA-516 steel during fracture testing. Four-point bending and AE tests were conducted simultaneously. AE signals were emitted in the process of plastic deformation. AE signal strength and amplitude of the weldment was the strongest, followed by PWHT specimen and basemetal. More AE signals were emitted from the weldment samples because of the oxides, and discontinuous mechanical properties. AE signal strength and amplitude for the basemetal or PWHT specimen decreased remarkably compared to the weldment because of lower strength. Pre-cracked specimens emitted even lower event counts than the corresponding blunt notched specimens. Dimple fracture from void coalescence mechanism is associated with low-level AE signal strength for the basemetal or PWHT. Tearing mode and dimple formation were shown on the fracture surfaces of the weldment, but only a small fraction produced detectable AE.

Evaluation on Residual Compressive Strength and Strain Properties of Ultra High Strength Concrete with Design Load and Elevated Temperature (설계하중 및 고온을 받은 초고강도 콘크리트의 잔존압축강도 및 변형 특성 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Nam, Jeong-Soo;Yun, Jong-Il;Bae, Chang-O;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.263-264
    • /
    • 2012
  • In this study, the ultra high strength concrete which have 100, 150, 200MPa took the heat from 20℃ to 70 0℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

A Study on the Stress and Deformation Behavior of an Alarm Valve using Finite Element Method (유한요소법을 이용한 알람밸브의 응력 및 변형거동에 관한 연구)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.14-17
    • /
    • 2012
  • The stress and deformation behavior of an alarm valve has been analyzed using a finite element method. The strength safety of an alarm valve is calculated for the given maximum test pressure of 2.0MPa. The FEM computed maximum stress of an alarm valve is only 6.1% of yield strength, 370MPa and 4.6% of tensile strength, 485MPa, which are occurred at the corner part between a cover flange and a valve body. And the maximum deformation of $12{\mu}m$ was developed at the middle part of an alarm valve. These results mean that a typical alarm valve was designed with a excessively high strength safety, which may lead to an increase of a weight and a dimension.

Determination of Structural Capacity Based on Deformation and Bond Strength for RC Structure at Steel Corrosion (변형과 부착강도 기반 철근 부식에 의한 RC구조물의 구조적 성능 평가)

  • Jung Wook Lee;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.449-457
    • /
    • 2023
  • In this study, the structural limit for concrete was experimentally determined against corrosion of steel. The structural limit was taken as (1) the deformation of concrete at yielding, (2) the maximum pull-out strength and (3) the pull-out strength at the level for uncorroded specimen. Corrosion of steel was accelerated by extracting charges from steel surface to govern degree of steel corrosion. As a result, an increase in the steel diameter resulted in an increase in the corrosion degree to reach the concrete deformation at yielding. Again, an increase in the steel diameter resulted in an increase in the extracted charge to meet the maximum and uncorroded-equivalent level for the bond strength. However, the mass loss was marginally affected by the steel size, reflecting that these parameters could be used to alert the structural limit.

Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness (측면충돌 성능 향상을 위한 고강도 강판의 적용 및 단순 센터필러 모델의 최적경량설계)

  • Bae, Gi-Hyun;Huh, Hoon;Song, Jung-Han;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.112-119
    • /
    • 2006
  • This paper is concerned with the light-weight design of a center-pillar assembly for the high-speed side impact of vehicle using advanced high strength steels(AHSS). Steel industries continuously promote the ULSAB-AVC project for applying AHSS to structural parts as an alternative way to improve the crashworthiness and the fuel efficiency because it has the superior strength compared to the conventional steel. In order to simulate deformation behavior of the center-pillar assembly, a simplified center-pillar model is developed and parts of that are subdivided employing tailor-welded blanks(TWB) in order to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. Factorial design is carried out aiming at the application and configuration of AHSS to simplified side-impact analysis because it needs tremendous computing time to consider all combinations of parts. In optimization of the center-pillar, S-shaped deformation is targeted to guarantee the reduction of the injury level of a driver dummy in the crash test. The objective function is constructed so as to minimize the weight and lead to S-shape deformation mode. Optimization also includes the weight reduction comparing with the case using conventional steels. The result shows that the AHSS can be utilized effectively for minimization of the vehicle weight and induction of S-shaped deformation.