• 제목/요약/키워드: Deformation Performance

검색결과 1,614건 처리시간 0.027초

몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석 (Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness)

  • 문승준;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

저온 용액 기반 유연 유기 시냅스 트랜지스터 제작 공정의 최근 연구 동향 (Recent Trends in Low-Temperature Solution-Based Flexible Organic Synaptic Transistors Fabrication Processing)

  • 김광훈;이은호;방대석
    • 접착 및 계면
    • /
    • 제25권2호
    • /
    • pp.43-49
    • /
    • 2024
  • 최근 유연 유기 시냅스 트랜지스터(flexible organic synaptic transistor, FOST)는 유기 반도체를 채널층으로 하여 유연성, 생체 적합성, 손쉬운 공정성, 복잡성 감소로 인해 주목받고 있다. 또한 기존의 무기 시냅스 소자에 비해 간단한 구조와 낮은 제조 비용으로 인간 뇌의 가소성을 모방할 수 있으므로 차세대 웨어러블 장치 및 소프트 로보틱스 기술에 적용이 가능하다. 유연 유기 시냅스 트랜지스터에서 유기 기판은 소자의 준비 온도에 민감하고 고온 처리 공정은 유기 기판의 열변형을 일으켜 고성능 소자를 제조하기 위해서는 저온용액 기반의 공정 기술이 필요하다. 본 총설에서는 저온 용액 기반 유연 유기 시냅스 트랜지스터 소자의 최신 공정 기술 연구 상황을 요약하고, 이에 따른 문제점과 해결해야 할 과제를 제시하고자 한다.

콘크리트 초기 수축균열특성 평가를 위한 판상-링형 구속시험방법의 성능평가에 관한 연구 (A Study on the Development of Flat-Ring Type Restrained Test Method and Performance Evaluation for Evaluating Shrinkage Cracking Properties of Concrete in Early Age)

  • 김규용;최형길;이의배;남정수;한민기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.188-196
    • /
    • 2009
  • 콘크리트는 초기재령에 있어서 수분의 증발 및 이동으로 소성 및 건조수축 등의 수축현상이 발생한 다. 국내에서는 아령형 구속건조수축몰드를 활용한 콘크리트의 건조수축 균열 평가방법을 KS에서 규격화하여 활용하고 있으나 이는 균열발생시점 및 구속수축응력을 평가하는 방법으로 균열발생량에 관한 정량적 평가는 어려운 실정이다. 이에 본 연구에서는 콘크리트의 수축변형거동 및 균열발생량에 대한 정량적 데이터를 확보하기 위하여 판상-링형 구속시험방법을 개발하고 시험체 치수가 콘크리트의 수축균열에 미치는 영향을 검토하여 판상-링형 구속시험방법의 최적 시험체 치수 도출 및 수축균열특성에 관한 정량적 평가방법을 제안하고 그 적용성을 검증하고자 한다.

프리캐스트 바닥판용 클램프 조인트의 피로내구성 (Fatigue Durability of Cramp Joint at Precast Highway Deck Slabs)

  • 김윤칠
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.156-162
    • /
    • 2008
  • 클램프 조인트를 이용하여 도로교 바닥판에 적용하기 위하여 실물 크기의 보 공시체를 이용하여 피로 내구성 실험을 수행 하였다. 실제 바닥판에서 발생하는 응력 상태를 가정하여 조인트 부에 주로 전단력이 작용하는 공시체(RC Type), 휨모멘트가 주로 작용하는 공시체(PSC Type), 순전단 타입공시체 3종류에 대해서 내구성 평가를 실시하였다. 클램프 조인트의 보 공시체에 대한 휨/전단 피로 실험의 결과 현행 설계 하중 레벨에서는 클램프 조인트는 루프 철근의 겹침길이에 상관없이 충분한 피로 내구성을 가지고 있다. 또한, 반복하중에 의한 피로 내구성 실험에 있어서도 조인트부의 강성 저하에 의한 변형을 고려하여 조인트 폭은 1.5D 이상으로 하면 충분한내구성이 있다는 결과를 얻었다.

내진 구조용 압축재로 활용을 위한 폴리케톤의 특성 평가 (Properties Evaluation of Polyketone for Use as Earthquake-Resistant Structural Compression Material)

  • 이헌우;노진원;김영찬;허종완
    • 대한토목학회논문집
    • /
    • 제44권2호
    • /
    • pp.133-139
    • /
    • 2024
  • 본 연구는 현재 내진 구조 분야에서 압축부재로 사용되고 있는 폴리우레탄의 한계를 극복하기 위해 폴리케톤이라는 신소재 제안을 목적으로 한다. 기존 폴리우레탄은 우수한 탄성 특성을 지녔음에도 불구하고 구조물에 발생하는 변위를 회복하기에는 부족한 경향이 있다. 반면, 폴리케톤은 뛰어난 강도 성능을 보유함과 동시에 친환경 소재로 주목받고 있다. 이러한 장점을 가진 폴리케톤의 압축특성 평가를 위하여 기존에 사용되고 있던 폴리우레탄과의 비교실험을 진행하고자 한다. 단순압축실험과 반복 하중 조건에서의 실험 속도 변화를 통해 폴리케톤의 속도 의존성을 파악하고, 추가적으로 선행압축을 적용하여 압축거동 특성을 확인하였다. 폴리케톤은 폴리우레탄에 비하여 약 10배가량 높은 압축강도를 나타내었으며 비교적 작은 변위에서는 14배가량 높은 변형 회복능력으로 폴리케톤의 우수한 회복특성을 입증하였다.

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • 제27권4호
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Dynamic response of imperfect functionally graded plates: Impact of graded patterns and viscoelastic foundation

  • Hafida Driz;Amina Attia;Abdelmoumen Anis Bousahla;Farouk Yahia Addou;Mohamed Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi;Mohammed Balubaid;S.R. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제91권6호
    • /
    • pp.551-565
    • /
    • 2024
  • This study presents a methodical investigation into improving structural designs through the analytical examination of the dynamic behavior of functionally graded plates (FGPs) resting on viscoelastic foundations. By employing a four variable first-order shear deformation theory, the study computes non-dimensional frequencies for a variety of porous FGPs with diverse graded patterns and porosity distributions. Different gradient patterns of the plates are considered, and three distinct functions-sigmoid (S-FGM), exponential (E-FGM), and power-law (P-FGM)-are utilized to assess material performance in specific directions. The equations of motion are derived and solved using both Navier's method and Hamilton's principle. Analytical solutions for vibration frequency are provided to validate the proposed methodology against existing literature. Furthermore, a comprehensive parametric analysis is conducted, taking into account various factors such as ceramic material, porosity distribution, gradient index, length-to-thickness ratio, gradient pattern, and damping coefficient. The findings suggest that enhancing the damping coefficient of the viscoelastic foundation can significantly improve the free-vibrational response of functionally graded material plates.

Numerical analysis on dynamic response and damage assessment of FRP bars reinforced-UHPC composite beams under impact loading

  • Tao Liu;Qi M. Zhu;Rong Ge;Lin Chen;Seongwon Hong
    • Computers and Concrete
    • /
    • 제34권4호
    • /
    • pp.409-425
    • /
    • 2024
  • This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah;Dayananda Pai K;Padmaraj N H;Satish Shenoy Baloor
    • Advances in materials Research
    • /
    • 제13권5호
    • /
    • pp.391-416
    • /
    • 2024
  • Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.