• Title/Summary/Keyword: Deformable grid technique

Search Result 3, Processing Time 0.018 seconds

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

External Store Separation Analysis Using Moving and Deforming Mesh Method (이동변형격자 기법을 활용한 외부장착물 분리운동 해석)

  • Ahn, Byeong Hui;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.9-20
    • /
    • 2019
  • A military aircraft generally includes external stores such as fuel tanks or external arming, depending on the purpose of the operation. When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. This can cause damage to the aircraft and endanger the life of the crew. In this study, time accurate computational fluid dynamics (CFD) with dynamic moving grid (moving and deformable mesh, MDM) technique has been used to accurately calculate store trajectories. For the verification of the present numerical approach, a wind tunnel test model for the wing-pylon-finned store configuration has been considered and analyzed. The comparison results for the ejected store trajectories between the present numerical analysis and the wind tunnel test data at the Mach number of 0.95 and 1.2 are presented. It is also importantly shown that the numerical parameter of MDM technique gives significant effect for the calculated store trajectory in the low-supersonic flow such as Mach 1.2.

A Finite Element Formulation for the Inverse Estimation of an Isothermal Boundary in Two-Dimensional Slab (상단 등온조건을 갖는 이차원 슬랩에서의 경계위치 역추정을 위한 유한요소 정식화)

  • Kim, Sun-Kyoung;Hurh, Hoon;Lee, Woo-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.829-836
    • /
    • 2001
  • A dependable boundary reconstruction technique is proposed. The finite element method is used for the analysis of the direct heat conduction problem to realize the deformable grid system. An appropriate strategy for grid update is suggested. A complete sensitivity analysis is performed to obtain the derivatives required for restoration of the optimal boundary. With the result of the sensitivity analysis, the unknown boundary is sought using the sequential quadratic programming. The method is applied to reconstruction of boundaries with sinusoidal, step, and cavity form. The overall performance of the proposed method is examined by comparison between the estimated the exact boundaries.