• Title/Summary/Keyword: Deflection ratio

Search Result 548, Processing Time 0.025 seconds

Strength and Deformation Behavior of Steel Plates under Cyclic Loadinga (반복하중을 받는 강판의 강도 및 변형특성)

  • Hwang, Won-Sup;Yoon, Hyung-Suk;Jeon, Seung-Kwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.143-152
    • /
    • 2001
  • This paper presents are monotonic and cyclic behavior of steel plates. The effects of design parameters, initial deflection and aspect ratio, width-thickness ratio are studied by using FEM analysis. The results obtained from the monotonic loadings show that the aspect ratio(a/b) on the strength is to be neglected in the range of $(a/b){\leq}1.0$. The major cause of the reduction in strength sbbjected to cyclic loadings are width-thickness ratio and displacement amplitude. Based on the results, this paper presents some new strength curve with considering the cyclic deteriorations. The results are also discussed about the deformation capacity accordance with the width-thickness ratio and displacement amplitude.

  • PDF

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Transfer Function Analysis of Cylindrical Coil Springs by Considering Surging Effect (서징 효과를 고려한 원통형 코일 스프링의 전달 함수 해석)

  • 김대원;신중호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.145-151
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of cylindrical coil spring subjected to dynamic behavior. Transfer functions are presented for both deflection and transmitted force as the output with force as the input. Steady state sinusoidal magnitude ratio and transmittance are plotted along with experimental data. It is shown that dynamic characteristic of cylindrical coil spring must be used to enhance the reability of vibration system dynamic behavior analysis in actuating over some frequency.

  • PDF

Buckling Analysis of Laminated Composite Plates (복합적층평판의 좌굴해석)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

Vibration Analysis of Elastic Beams Subjected to Moving Load (이동하는 동적하중을 받는 탄성보의 진동해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.408-413
    • /
    • 1997
  • The linear dynamic response of a simply supported uniform beam under a moving load of constant magnitude is investigated. When the ratio of the moving weight and the structure weight is small, moving object is considered as a concentrated or distributed moving force, that is large external loading can be considered as a concentrated or distributed moving masses. Result from the numerical solutions of the differential equations of motion are shown graphically. Moreover, when considering the maximum deflection for the mid-span of the hewn, the critical speeds of the moving load have been evaluated.

  • PDF

Relationship between Crack Characteristics and Damage State of Strengthened Beam (보강된 보의 균열특성과 손상상태의 상관관계)

  • 한만엽;김상종
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.805-812
    • /
    • 2002
  • The number of old concrete structure which needs to be strengthened has been increased. The repair and strengthening methods have to be determined based on the current status of the structure. Consequently the estimation method for the damage status of the structure has been desperately needed, but no studies have been tried to use the crack and deflection characteristics to estimate the damage status. In this study, the crack characteristics depending on load level were measured and analysed. The crack characteristics observed from 11 samples were compared with damage status, and load level, The crack characteristics examined in this study include crack number, crack length, crack range, crack interval, maximum crack length, crack area, and average crack length. The deflections were normalized based on yield deflection, and the relationship between the relative deflection and the standardized crack characteristics were compared. Among the crack characteristics, crack interval, crack area, crack range, and maximum crack length, have been showed a close relationship to the relative deflection. Therefore, if such crack characteristics are evaluated, the maximum load applied to the structure is believed to be estimated. if additional parameters such as size of specimen, strength of concrete and steel, and steel ratio are studied, the damage status of structure can be estimated more accurately.

Evaluation of Structural Behavior and Moment of Inertia on Modular Slabs Subjected to Cyclic Loading (반복하중을 받는 모듈러 슬래브의 거동 및 단면2차모멘트 평가)

  • Park, Jongho;Choi, Jinwoong;Lee, Hong-Myung;Park, Sun-Kyu;Hong, Sungnam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • Recently, the maintenance activity for aging of bridge structures was difficult because of traffic jam, environment pollution and increasing cost. And to solve these problems, modular bridge research has been studied. After static and cyclic loading test was conducted for serviceability and bending performance with one way slab, effective moment of inertia of modular specimen was analyzed to estimate the deflection by KCI(2012). To conduct the test, one integral slab and three modular slabs were made for static loading and one integral and modular slab were made for cyclic. As a result of the test, the modular slab had the similar bending performance of the integral. But the ultimate deflection showed the insufficient which was smaller than 20%. In the cyclic loading test, the modular slab has different behavior of deflection with the integral, so it was evaluated difficult for serviceability. In addition, effective moment of inertia by KCI(2012) was not estimated for modular slab with connection. The new value of m which was ratio between moments is 4.53 based on result of test for predicting deflection of modular.

Behavior of CFST columns with inner CFRP tubeunder biaxial eccentric loading

  • Li, Guochang;Yang, Zhijain;Lang, Yan;Fang, Chen
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1487-1505
    • /
    • 2016
  • This paper presents the results of an experimental study on the behavior of a new type of composite FRP-concrete-steel member subjected to bi-axial eccentric loading. This new type of composite member is in the form of concrete-filled square steel tube slender columns with inner CFRP (carbon fiber-reinforced polymer) circular tube, composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes. Tests on twenty-six specimens of high strength concrete-filled square steel tube columns with inner CFRP circular tube columns (HCFST-CFRP) were carried out. The parameters changed in the experiments include the slenderness ratio, eccentric ratio, concrete strength, steel ratio and CFRP ratio. The experimental results showed that the failure mode of HCFST-CFRP was similar to that of HCFST, and the specimens failed by local buckling because of the increase of lateral deflection. The steel tube and the CFRP worked together well before failure under bi-axial eccentric loading. Ductility of HCFST-CFRP was better than that of HCFST. The ultimate bearing capacity of test specimen was calculated with simplified formula, which agreed well with test results, and the simplified formula can be used to calculate the bearing capacity of HCFSTF within the parameters of this test.

Cutting-Pattern and Cutting Characteristics of the Reciprocating Cutter-bar of Combine Harvester(I) -Cutting Mechanism and Cutting Characteristics of the Standard Type Reciprocating Knife- (콤바인 예취장치의 절단특성에 관한 연구( I ) -절단현상 및 표준형 칼날의 절단특성-)

  • 정창주;이성범;인효석
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 1995
  • This study was conducted to investigate the cutting mechanism of the reciprocating knife of combine harvester. The cutting operation of reciprocating knife was demonstrated through the cutting pattern diagram which was drawn by computer graphics. Various kinds and dimensions of standard-type reciprocating knives were analyzed by the developed program. The results are summarized as follows : (1) For the 50mm standard reciprocating knife, the bunching area and the maximum stalk-deflection were decreased rapidly according to the increase of cutting velocity ratio by 1.0 and decreased very slowly over this ratio. But, the secondary cut was occurred at ratio of 1.0 and increased rapidly over this ratio. (2) The 76mm standard knife showed better cutting mechanism than the 50mm, in two respects : the larger cutting area per one stroke and the lower revolutional speed of crank shaft for the same cutting velocity. (3) In respect to the bunching area and the secondary cutting length, the adequate height of 50mm standard reciprocating knife was 45~50mm. (4) In order to maintain the proper cutting mechanism, the adequate cutting velocity at forward speed of 0.5㎧ to 1.2m/s was from 0.4m/s to 1.2m/s for the standard knife.

  • PDF

Minimum Thickness Requirements of Flat Plate Affected by Construction Load (시공 하중의 영향을 받는 플랫 플레이트의 최소 두께)

  • Kang, Sung-Hoon;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.650-661
    • /
    • 2003
  • During construction of reinforced concrete building, construction load two times as much as the self weight of a slab, is imposed on the slab, and strength and stiffness of the early-age concrete are not fully developed. As the result, the construction load frequently causes excessive deflection and cracking in the flat plate. The minimum thickness of flat plate specified by the current design codes does not properly address such effect of the construction load. In the present study, a simplified method was developed to calculate the deflection of flat plate affected by the construction load. The proposed method can consider the effects of a variety of design parameters such as the aspect ratio of plate, boundary condition, concrete strength, and construction load. A design equation for the minimum thickness was developed based on the proposed method.