• Title/Summary/Keyword: Deflection Routing

Search Result 16, Processing Time 0.02 seconds

A High-Performance Fault-Tolerant Switching Network and Its Fault Diagnosis (고성능 결함감내 스위칭 망과 결함 진단법)

  • 박재현
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.335-346
    • /
    • 2004
  • In this paper, we present a high-performance fault-tolerant switching networks using a deflection self-routing scheme, and present fault-diagnosis method for the network. We use the facts: 1) Each stage of the Banyan network is arrayed as the sequences of a Cyclic group of SEs. 2) There is the homomorphism between adjacent stages from a view of self-routing, so that all of each Cyclic group is the subgroup of the Cyclic group in the next stage, and there are factor groups due to such subgroup and homomorphism. We provide high-performance fault-tolerant switching networks of which the all links including augmented links are used as the alternate links detouring faulty links. We also present the fault diagnosis scheme for the proposed switching network that provide multiple paths for each input-output pair.

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.

Pre-reservation of Resources and Controlled Loops for Contention Resolution in OBS Networks

  • Comellas, Jaume;Conesa, Josep;Padaro, Salvatore;Junyent, Gabriel
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.682-684
    • /
    • 2007
  • A new scheme to alleviate contention in optical burst switching networks is proposed. It consists of preventively reserving resources in a node, to be used if resources are busy on the next hop node. The burst is sent back to the preceding node and then resent forward. Simulations are carried out to assess the feasibility of the proposed scheme. Its performance is compared with that of contention resolution based on deflection routing.

  • PDF

Buffer-based Service Differentiation Scheme in Optical Burst Switching Networks (광 버스트 스위칭 네트워크에서 버퍼 기반의 서비스 차별화 방식)

  • Paik, Jung-Hoon;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2835-2842
    • /
    • 2013
  • In this paper, service differentiation scheme using optical buffer that is reduced in size with slow-light technology in optical burst switching networks is presented. In suggested scheme, each outport has buffer to store high-class burst only in case that all its wavelengths are occupied. When all wavelengths are being used, a new arriving high-class burst goes into the buffer and waits until a burst is serviced. As soon as a burst is serviced with a wavelength, the high-class burst at buffer is allocated to the free wavelength. In case that low-class burst is arriving under the same situation, it is not stored at the buffer but discarded. An analytical model is derived to analyze the performance of the suggested scheme and compare its performance with the conventional scheme such as preemption and deflection as well as no service differentiations.

Reliability Analysis of the 2-Dimensional Ring-Banyan Network (2차원 링-밴얀 망의 신뢰성 분석)

  • Park, Jae-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.4
    • /
    • pp.256-261
    • /
    • 2007
  • 2-Dimensional Ring-banyan network is a high-performance fault-tolerant switching network using a deflection self-routing. The throughput of the switching network is better than that of Cyclic Banyan network under non-uniform traffic. In this paper, we present an analytic reliability analysis of the fault-tolerant switching network. We present the Mean-Time-to-Failure that is calculated by using probabilistic model. This model also takes into account a hardware complexity. In case of $16\;{\times}\;16$ size, the presented switching network is 1.275 times more reliable than Hui's switching network. And it is 1.510 times more reliable than Hui's network in case of $64\;{\times}\;64$ size.

The Cell Resequencing Buffer for the Cell Sequence Integrity Guarantee for the Cyclic Banyan Network (사이클릭 벤얀 망의 셀 순서 무결성 보장을 위한 셀 재배열 버퍼)

  • 박재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, we present the cell resequencing buffer to solve the cell sequence integrity problem of the Cyclic banyan network that is a high-performance fault-tolerant cell switch. By offering multiple paths between input ports and output ports, using the deflection self-routing, the Cyclic banyan switch offer high reliability, and it also solves congestion problem for the internal links of the switch. By the way, these multiple paths can be different lengths for each other. Therefore, the cells departing from an identical source port and arriving at an identical destination port can reach to the output port as the order that is different from the order arriving at input port. The proposed cell resequencing buffer is a hardware sliding window mechanism. to solve such cell sequence integrity problem. To calculate the size of sliding window that cause the prime cost of the presented device, we analyzed the distribution of the cell delay through the simulation analyses under traffic load that have a nonuniform address distribution that express tile Property of traffic of the Internet. Through these analyses, we found out that we can make a cell resequencing buffer by which the cell sequence integrity is to be secured, by using a, few of ordinary memory and control logic. The cell resequencing buffer presented in this paper can be used for other multiple paths switching networks.