• Title/Summary/Keyword: Deflagration to detonatin transition

Search Result 1, Processing Time 0.015 seconds

Numerical simulation of deflagration to detonation transition in bent tube (굽은 관에서의 연소폭발천이 현상 모델링)

  • Gwak, Min-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.263-267
    • /
    • 2011
  • This paper presents a numerical investigation of the deflagration to detonation transition (DDT) of flame acceleration by a shock wave filled with an ethylene-air mixture in bent tube. A model consisting of the reactive compressible Navier-Stokes equations and the ghost fluid method (GFM) for complex boundary treatment is used. A various intensities of incident shock wave simulations show the generation of hot spots by shock-flame interaction and the accelerated flame propagation due to geometrical effect. Also the first detonation occurs nearly constant chemical heat release rate, 20 MJ/($g{\cdot}s$). Through our simulation's results, we concentrate the complex confinement effects in generating strong shock wave, shock-flame interaction, hot spot and DDT in pipe.

  • PDF