• Title/Summary/Keyword: Defensive mechanism

Search Result 36, Processing Time 0.023 seconds

Regulation of Cinnamyl Alcohol Dehydrogenase (CAD) Gene Family in Lignin Biosynthesis (리그닌 생합성에서 cinnamyl alcohol dehydrogenase (CAD) 유전자 family의 조절)

  • Kim, Young-Hwa;Huh, Gyung-Hye
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.944-953
    • /
    • 2021
  • Lignin is a complex phenylpropanoid polymer abundant in the cell walls of vascular plants. It is mainly presented in conducting and supporting tissues, assisting in water transport and mechanical strength. Lignification is also utilized as a defense mechanism against pathogen infection or wounding to protect plant tissues. The monolignol precursors of lignin are synthesized by cinnamyl alcohol dehydrogenase (CAD). CAD catalyzes cinnamaldehydes to cinnamyl alcohols, such as p-coumaryl, coniferyl, and sinapyl alcohols. CAD exists as a multigenic family in angiosperms, and CAD isoforms with different functions have been identified in different plant species. Multiple isoforms of CAD genes are differentially expressed during development and upon environmental cues. CAD enzymes having different functions have been found so far, showing that one of its isoforms may be involved in developmental lignification, whereas others may affect the composition of defensive lignins and other wall-bound phenolics. Substrate specificity appears differently depending on the CAD isoform, which contributes to revealing the biochemical properties of CAD proteins that regulate lignin synthesis. In this review, details regarding the expression and regulation of the CAD family in lignin biosynthesis are discussed. The isoforms of the CAD multigenic family have complex genetic regulation, and the signaling pathway and stress responses of plant development are closely linked. The synthesis of monolignol by CAD genes is likely to be regulated by development and environmental cues as well.

Transcription Factor E2F7 Hampers the Killing Effect of NK Cells against Colorectal Cancer Cells via Activating RAD18 Transcription

  • Bingdong Jiang;Binghua Yan;Hengjin Yang;He Geng;Peng Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.920-929
    • /
    • 2024
  • As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.

Effects of Endotoxin and Verapamil on Superoxide Production by Rat Alveolar Macrophage (백서폐포대식세포에서의 Superoxide 생산에 미치는 내독소 및 Verapamil의 영향)

  • Lee, Choon-Taek;Kim, Keun-Youl
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.3
    • /
    • pp.223-235
    • /
    • 1993
  • Background: Superoxide anion which was produced by macrophage and neutrophil has a defensive role to kill invasive microorganisms and also an injurious role to produce self lung damage. Production of oxygen free radicals including superoxide is a main mechanism of acute lung injury caused by bacterial endotoxin. Endotoxin is known to activate alveolar macrophage to produce increased oxygen free radicals after the stimulation with various biological materials (priming effect). Calcium is a very important intracellular messenger in that cellular process of superoxide production. Method: This experiment was performed to elucidate the effects of endotoxin and calcium on superoxide production by phorbol myristate acetate-stimulated alveolar macrophage and the effect of verapamil on priming effect of endotoxin. Results: 1) Preincubation of macrophages with endotoxin (E. coli 055-B5) primed the cells to respond with increased superoxide production after the stimulation with PMA. Priming with endotoxin ($10^{-1}$ug/ml) produced a maximal enhancement of superoxide production (43%). 2) Verapamil could inhibit the superoxide production by PMA stimulated macrophage regardless of the presence of extracellular calcium. This means that the inhibitory effect of verapamil is caused by a mechanism independent of blocking calcium influx. 3) Verapamil could inhibit the priming effect of endotoxin on alveolar macrophage (from 30% increment to 13% increment) and could inhibit the superoxide production by PMA-stimulated macrophage preincubated with endotoxin. Conclusion: We concluded that verapamil could inhibit the superoxide production by PMA-stimulated rat alveolar macrophage and also inhibit the priming effect of endotoxin on alveolar macrophage. These inhibitory effects of verapamil could be one of the mechanisms of verapamil effects on endotoxin induced lung injury.

  • PDF

Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo (생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위)

  • Na, Won-Heum;Kang, Han-Seung;Eo, Jin-Won;Gye, Myung-Chan;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Reactive oxygen species(ROS) generated in cellular metabolism have an effect on cell maturation and development. In human reproductive tract, oxidative injury by ROS may induce female infertility. Also, oxidative injury may be responsible for developmental retardation and arrest of mammalian preimplantation embryos. Activating transcription factor 4(ATF4) is a member of the cyclic-AMP response element-binding(CREB) familiy of basic region- leucine zipper(bZip). ATF4 is known to regulate stress response to protect cell from various stress factors and inducer of apoptisis. The purpose of this study was to investigate whether ATF4 is involved in the defensive mechanism in oxidative stress condition during the development of mouse preimplantation embryos. To verify the expression of ATF4 in oxidative stress condition, 2-cell stage embryos were cultured in HTF media containing 0.1mM, 0.5mM or 1mM hydrogen peroxide($H_2O_2$) for 1hr(2-cell), 8hr(4-cell), 17hr(8-cell), 24hr(morula), 48hr(early blastocyst) or 64hr(late blastocyst). The developmental rate decreased in the 0.1mM $H_2O_2$ treated group compared with control group. In embryos treated with 0.5mM and 1mM $H_2O_2$ showed 2-cell block. As a results of the semi-quantitative RT-PCR analysis of SOD1, ATF4 and Bax gene expression, SOD1, ATF4 and Bax genes were increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. In 2-cell embryos, expression of SOD1, ATF4 and Bax genes were notably increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. Immunofluorescence analysis showed that ATF4 protein was localized at the cytoplasm of preimplantation embryos. The increase in ATF4 immunoreactivety was observed in the 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. It suggests that oxidative stress by $H_2O_2$ induces expression of ATF4 and may be involved in protection mechanism in preimplantation embryos from oxidative injury.

  • PDF

The Effect of Histamine on Polymorphonuclear Leukocyte-induced Pneumocyte Injury in Vitro (다형핵구에 의한 폐포세포 손상에 Histamine이 미치는 영향)

  • Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyung;Han, Ki-Don;Moon, Hwa-Sik;Sang, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Background: Although polymorphonuclear leukocytes (PMN) are important in protecting the airways and alveolar surfaces, there is evidence that they can also injure the lung while exercising their defensive role. However it has been unclear whether PMN-induced pneumocyte injury is mediated by their direct cytotoxic effect on target cells or by PMN-derived cytotoxic mediators. On the other hand histamine was known not only to act as an important chemical mediator participated in the pathogenesis of some atotic and allegic disorders, but also to have an inhibitory effect on normal PMN functions. Method: To study the mechanism by which PMN induce pneumocyte injury, we cocultured PMN from four healthy nonsmokers or their PMN-derived supernatants (PMN-SPN) with monolayers of $^{51}Cr$-labeled human A549 pneumocytes and compared PMN-and PMN-SPN-mediated pneumocyte injuries measured by $^{51}Cr$ release assay. We also compared the effects of histamine on each pneumocyte injury. Results: 1) PMN-SPN showed more injurious effect on A549 pneumocytes than that of PMN itself regardless histamine pretreatment of PMN. 2) Pneumocyte injury by PMN with histamine pretreatment was increased or decreased compared with that by PMN without histamine pretreatment, according to histamine concentrations, and PMN stimulating agents and their concentrations. 3) Pneumocyte injury by PMN-SPN with histamine pretreatment tended to be decreased compared with that by PMN-SPN without histamine pretreatment. Conclusion: Our results suggest that PMN-SPN may play more important role in mediating pneumocyte injury than PMN itself and that histamine may partially play a protective role on PMN-induced pneumocyte injury. Alternatively we conclude that the effects of histamine on PMN-induced pneumocyte injury may be affected by microenvironment in vivo.

  • PDF

Tyrosinase Inhibition-mediated Anti-melanogenic Effects by Catechin Derivatives Extracted from Ulmus parvifolia (참느릅나무에서 추출된 catechin 유도체 화합물의 멜라닌 생성 억제 효과)

  • Taehyeok Hwang;Hyo Jung Lee;Dong-Min Kang;Kyoung Mi Moon;Jae Cheal Yoo;Mi-Jeong Ahn;Dong Kyu Moon;Dong Kyun Woo
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.169-175
    • /
    • 2023
  • As a protective defensive mechanism against ultraviolet (UV) light exposure in skin tissue, melanocytes produce the pigment melanin. Tyrosinase plays a key role in melanin production in melanocytes. However, the overproduction of melanin can lead to lesions, such as freckles and dark spots. Thus, it is clinically important to find a modulating molecule to control melanogenesis by regulating tyrosinase expression and/or activity. It is known that catechin, a plant flavonoid, can reduce melano- genesis through the downregulation of tyrosinase expression. Here, we tested whether catechin derivatives isolated from the stem bark of Ulmus parvifolia have an effect on melanin production by regulating tyrosinase in mouse melanoma cells and in vitro mushroom tyrosinase. The catechin derivatives used in this study included C5A, C7A, C7G, and C7X. Treatments using these catechin derivatives reduced melanin production in mouse melanoma B16F10 cells in which melanogenesis was stimulated by α-MSH. Notably, the anti-melanogenic effects of catechin derivatives were similar to those of kojic acid, a well-known anti-melanogenic molecule. Both C5A and C7A directly inhibited the activity of tyrosinase isolated from mushrooms in vitro. Furthermore, our in silico computational simulation showed that these two compounds were expected to bind to the active site of tyrosinase, which is similar to kojic acid. In addition, all four catechin derivatives reduced tyrosinase protein expression. In summary, our results showed that catechin derivatives can reduce melanogenesis by regulating tyrosinase activity or expression. Thus, this study suggests that catechin derivatives isolated from U. parvifolia can be novel modulators of melanin production.