• Title/Summary/Keyword: Defense modeling and simulation

Search Result 251, Processing Time 0.029 seconds

A Study on the Initial Design Method for an Effective Acquisition of Future Ground Combat Vehicles (미래지상전투차량의 효과적 획득을 위한 초기설계기법에 관한 연구)

  • Kim, Hee-young;Kwon, Seung Man;Lee, Kyu Noh
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.41-49
    • /
    • 2017
  • In the acquisition program, the conceptual design is the most important step toward specifying the military objectives, establishing requirements and determining future developmental directions, of a target system. However, if both the requirements and directions are incorrectly set due to the lack of development experiences and literature backgrounds in the target systems, such as future ground combat vehicles, it may become a major risk in the future design phases and the entire acquisition program. In order to correct these errors in the future phases, time, effort and cost are required. Therefore, it is necessary to reduce the errors that occur in the initial stages to effectively acquire the future ground combat vehicles. This paper describes the initial design method for verifying the requirements and the developmental directions and estimating the system performance at the conceptual design through the system-level physical modeling and simulation (M&S) and the target system performance analysis. The system-level physical M&S use cutting-edge design tools, model-based designs and geometric-based designs. The system performance estimation is driven from the results of the system-level physical M&S and the specialized system analysis software.

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

A Study of Influencing Factors Upon Using C4I Systems: The Perspective of Mediating Variables in a Structured Model (C4I 시스템 사용의 영향 요인에 관한 연구: 구조모형의 매개변수의 관점에서)

  • Kim, Chong-Man;Kim, In-Jai
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.73-94
    • /
    • 2009
  • The general aspects for the future warfare shows that the concept of firepower and maneuver centric warfare has been replacing with that of information and knowledge centric warfare. Thus, some developed countries are now trying to establish the information systems to perform intelligent warfare and innovate defense operations. The C4I(Command, Control, Communication, Computers and Intelligence for the Warrior) systems make it possible to do modern and systematic war operations. The basic idea of this study is to investigate how TAM(Technology Acceptance Model) can explain the acceptance behavior in military organizations. Because TAM is inadequate in explaining the acceptance processes forcomplex technologies and strict organizations, a revised research model based upon TAM was developed in order to assess the usage of the C4I system. The purpose of this study is to investigate factors affecting the usage of C4I in the Korean Army. The research model, based upon TAM, was extended through a belief construct such as self-efficacy as one of mediating variables. The self-efficacy has been used as a mediating variable for technology acceptance, and the variable was included in the research model. The external variables were selected on the basis of previous research. The external variables can be classified into following: 1) technological, 2) organizational, and 3) environmental factors on the basis of TOE(Technology-Organization-Environment) framework. The technological factor includes the information quality and the task-technology fitness. The organizational factor includes the influence of senior colleagues. The environmental factor includes the education/train data. The external variables are considered very important for explaining the behavior patterns of information technology or systems. A structured questionnaire was developed and administrated to those who were using the C4I system. Total 329 data were used for statistical data analyses. A confirmatory factor analysis and structured equation model were used as main statistical methods. Model fitness Indexes for measurement and structured models were verified before all 18 hypotheses were tested. This study shows that the perceived usefulness and the self-efficacy played their roles more than the perceived ease of use did in TAM. In military organizations, the perceived usefulness showed its mediating effects between external variables and dependent variable, but the perceived ease of use did not. These results imply that the perceived usefulness can explain the acceptance processes better than the perceived ease of use in the army. The self-efficacy was also used as one of the three mediating variables, and showed its mediating effects in explaining the acceptance processes. Such results also show that the self-efficacy can be selected as one possible belief construct in TAM. The perceived usefulness was influenced by such factors as senior colleagues, the information quality, and the task-technology fitness. The self-efficacy was affected by education/train and task-technology fitness. The actual usage of C4I was influenced not by the perceived ease of use but by the perceived usefulness and selfefficacy. This study suggests the followings: (1) An extended TAM can be applied to such strict organizations as the army; (2) Three mediation variables are included in the research model and tested at real situations; and (3) Several other implications are discussed.

Modeling and Verification of Multibody Dynamics Model of Military Vehicle Using Measured Data (실차 측정 정보를 이용한 군용 차량의 다물체 동역학 모델링 및 검증)

  • Ryu, Chi Young;Jang, Jin Seok;Yoo, Wan Suk;Cho, Jin Woo;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1231-1237
    • /
    • 2014
  • It is essential to perform driving performance tests of military vehicles on rough terrain. A full car test is limited by cost and time constraints, because of which a dynamic analysis via computer simulation is preferred. In this study, a vehicle model is developed using MSC.ADAMS, a commercial multibody analysis program, and compared via experiments. FTire is modeled using the results of a tire performance test to obtain the vertical stiffness. A nonlinear damper is modeled by a characteristic experiment. Leaf springs are modeled with beam force elements and consisted to a vehicle model. The vertical force and acceleration response of the wheel are identified when vehicle is passing over a simple bump as well as a sinusoidal road. The developed vehicle model is verified with the results of a full car test.

The Interpretation of Separation Mechanism of Ridge-Cut Explosive Bolt Using Simulation Programs (해석프로시져를 이용한 리치컷형 폭발볼트 분리기구 해석)

  • Lee, Yeung-Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.102-114
    • /
    • 2004
  • The present work has been developed the interpretation processor including the behavior of material failure and the separation phenomena under transient dynamic loading (the operation of explosive bolt) using AUTODYN V4.3, SoildWork 2003 and TrueGrid V2.1 programs. It has been demonstrated that the interpretation in ridge-cut explosive bolt under dynamic loading condition should be necessary to the appropriate failure model and the basic stress of bolt failure is the principal stress. The use of this interpretation processor developing the present work could be extensively helped to design the shape and the amount of explosives in the explosive bolt having a complex geometry. It is also proved that the interpretation processor approach is an accurate and effective analysis technique to evaluate the separation mechanism in explosive bolts.

Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator (파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • We presented a hydrodynamic modeling necessary to accurately reproduce shock-induced detonation of pyrotechnic initiator. The methodology for such numerical prediction of shock propagation is quite straight forward if the models are properly implemented and solved in a well-formulated shock physics code. A series of SSGT(Small Scale Gap Test) and detailed hydrodynamic simulation are conducted to quantify the shock sensitivity of an acceptor that contains 97.5% RDX. A TBI(Through Bulkhead Initiator) system, consisting of a train configuration of Donor(HNS+HMX) - Bulkhead(STS) - Acceptor(RDX), were investigated to further validate the interaction between energetic and non-reactive materials for predicting the detonating response for successful operation of such small pyro device.

A Study on VV&A Application for the Korean Wartime Resource Requirement Model (한국형 전시자원소요산정 모델에 대한 VV&A 적용방안 연구)

  • Kim, Min-Suk;Jung, Whan-Sik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.51-61
    • /
    • 2009
  • Recently, the necessity of VV&A and the importance of M&S are increasing in the national defense area. The purpose of VV&A is to assure a proper development of M&S and to provide users with sufficient information to determine if M&S could meet their demands. Therefore, VV&A process needs to be performed to guarantee the credibility of the M&S. However, the basic guidance and regulation of VV&A are not yet developed in Korea. This paper proposed the VV&A application process in the Korean Wartime Resource Requirement Model, focusing on the close combat situation of the model. The VV&A process provided in this paper can also be applied to other analytical models currently developing in Korea.

Pitching Moment Coefficient Modeling of KF-16 using Adaptive Design of Experiments with cost consideration (실험비용을 고려한 적응적 실험설계법 기반 KF-16 피칭모멘트계수 모델링)

  • Lee, Don-Goo;Jin, Hyeon;Ahn, Jaemyung;Lee, Yeongbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.537-543
    • /
    • 2016
  • A new approach to systematically model aerodynamic coefficients using an adaptive sampling based wind tunnel testing considering cost is proposed. The Latin Hypercube design is used for selecting initial test points. The Gaussian Process (GP) is iteratively used during the experiment to determine additional experimental points that minimizes the uncertainty reduction per incremental cost. A numerical simulation based experiment was conducted using the static aerodynamic coefficient database a fighter aircraft, which demonstrated the validity of the proposed method.

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.

A study on Deep Operations Effect Analysis for Realization of Simultaneous Offense-Defence Integrated Operations (공방동시통합작전 구현을 위한 종심작전 효과분석 연구)

  • Cho, Jung Keun;Yoo, Byung Joo;Han, Do Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2021
  • Ground Component Command (GCC) has been developing operational planning and execution systems to implement "Decisive Integrated Operations", which is the concept of ground operations execution, and achieved remarkable results. In particular, "Simultaneous Offense-Defense Integrated Operations" is developed mainly to neutralize enemies in deep areas and develop favorable conditions for the allies early by simultaneously attacking and defending from the beginning of the war. On the other hand, it is limited to providing scientific and reasonable support for the commander's decision-making process because analyzing the effects of the deep operation with existing M&S systems is impossible. This study developed a model for analyzing the effects of deep operations that can be used in the KJCCS. Previous research was conducted on the effects of surveillance, physical strike, and non-physical strike, which are components of deep operations to find the characteristics and limitations and suggest a research direction. A methodology for analyzing the effects of deep operations reflecting the interactions of components using data was then developed by the GCC, and input data for each field was calculated through combat experiments and a literature review. Finally, the Deep operations Effect CAlculating Model(DECAM) was developed and distributed to the GCC and Corps battle staff during the ROK-US Combined Exercise. Through this study, the effectiveness of the methodology and the developed model were confirmed and contribute to the development of the GCC and Corps' abilities to perform deep operations.