• Title/Summary/Keyword: Defect structure

Search Result 757, Processing Time 0.025 seconds

Structure and optical properties of vapor grown In2O3: Ga nano-/microcrystals

  • Sanchez, Diego Leon;Ramon, Jesus Alberto Ramos;Zaldivar, Manuel Herrera;Pal, Umapada;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.81-96
    • /
    • 2015
  • Octahedral shaped single crystalline undoped and Ga-doped indium oxide nano-and microcrystals were fabricated using vapor-solid growth process. Effects of Ga doping on the crystallinity, defect structure, and optical properties of the nano-/microstructures have been studied using scanning electron microscopy, microRaman spectroscopy, transmission electron microscopy and cathodoluminescence spectroscopy. It has been observed that incorporation of Ga does not affect the morphology of $In_2O_3$ structures due to its smaller ionic radius, and similar oxidation state as that of In. However, incorporation of Ga in high concentration (~3.31 atom %) causes lattice compression, reduces optical band gap and defect induced CL emissions of $In_2O_3$ nano-/microcrystals. The single crystalline Ga-doped, $In_2O_3$ nano-/microcrystals with low defect contents are promising for optoelectronic applications.

Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles

  • Zeferino, Raul Sanchez;Pal, Umapada;Reues, Ma Eunice De Anda;Rosas, Efrain Rubio
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Well-crystalline $SnO_2$ nanoparticles of 4-5 nm size with different In contents were synthesized by hydrothermal process at relatively low temperature and characterized by transmission electron microscopy (TEM), microRaman spectroscopy and photoluminescence (PL) spectroscopy. Indium incorporation in $SnO_2$ lattice is seen to cause a lattice expansion, increasing the average size of the nanoparticles. The fundamental phonon vibration modes of $SnO_2$ lattice suffer a broadening, and surface modes associated to particle size shift gradually with the increase of In content. Incorporation of In drastically enhances the PL emission of $SnO_2$ nanoparticles associated to deep electronic defect levels. Although In incorporation reduces the band gap energy of $SnO_2$ crystallites only marginally, it affects drastically their dye degradation behaviors under UV illumination. While the UV degradation of methylene blue (MB) by undoped $SnO_2$ nanoparticles occurs through the production of intermediate byproducts such as azure A, azure B, and azure C, direct mineralization of MB takes place for In-doped $SnO_2$ nanoparticles.

Defect Structures in LiNbO3 Single Crystals Grown by Czochralski Method : Dislocation Etch Pits Morphology (Czochralski법으로 성장시킨 LiNbO3 단결정의 결함구조 : Dislocation Etch Pits Morphology)

  • 장동석;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.661-669
    • /
    • 1989
  • The defect structure in LiNbO3 single crystals grown by Czochralski method from the congruently melting composition were investigated. Chemical etching patterns were studied in x-plane, z-plane, and major cleavage plane, respectively, dislocation density was higher at the periphery of crystals than at the center because the thermal stress due to radial temperature gradient had a main effect on it, as compared with dislocations formed from the solid-liquid interface. Many dislocation lineages were arranged along several directions.

  • PDF

The Oxygen Potential of Urania Nuclear Fuel During Irradiation

  • Park, Kwang-Heon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.72-77
    • /
    • 1998
  • A defect model for UO$_2$ fuel containing soluble fission products was devised based on the defect structure of pure and doped uranias. Using the equilibrium between fuel solid-solution and fission-products and the material balance within the fuel, a tracing method to get the stoichiometry change of urania fuel with burnup was made. This tracing method was applied to high burnup urania fuel and DUPIC fuel. The oxygen potential of urania fuel turned out to increase slightly with burnup. The stoichiometry change was calculated to be negligible due to the buffering role f Mo. The oxygen potential of DUPIC fuel out to be sensitive to the initial chemical state of Mo in the fuel.

  • PDF

InSe 단일층의 vacancy 결함 특성 연구

  • Lee, Seo-Yun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.468-472
    • /
    • 2017
  • 2차원 InSe 단일층에 존재할 수 있는 vacancy defect인 In vacancy, Se vacancy의 원자구조 및 전자구조 특성을 제일원리계산을 이용해 살펴보았다. InSe $5{\times}5$ supercell을 이용하였으며 total energy를 구해 어떤 구조가 가장 안정한지 찾았다. Relax된 결함구조들을 clean InSe와 비교하여 어떤 변화가 있었는지 특징을 분석하였다. 이러한 intrinsic 결함들이 각각 어떤 구조로 relaxation되는지 살펴보고 clean InSe와 비교해보았다. 또한 각 결함구조의 density of states (DOS), projected density of states (PDOS)와 band structure를 clean InSe와 비교해봄으로써 defect state가 어떻게 나타나는지를 찾아보았다.

  • PDF

Finite Element and Experimental Validation of SINTAP Defect Assessment Procedure for Welded Structure (수치해석과 실험에 의한 SINTAP 용접 구조물 균열 평가법의 검증)

  • 김윤재;김진수
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.50-57
    • /
    • 2004
  • This paper provides FE and experimental validation of the defect assessment method for strength mismatched welded structures, resulting from the Brite Euram SINTAP (Structural Integrity Assessment Procedures for European Industry) project. This shows that the proposed method is conservative, and that the degree of conservatism is similar to that embedded in the methods for homogeneous structures. It provides confidence in the use of the proposed SINTAP method for assessing defective weld strength mismatched structures.

Analysis of Defect Risk by Work Types based on Warranty Liability Period in Apartments (공동주택 하자보수보증기간에 기초한 공종별 하자위험 분석)

  • Kim, Sang-Hyeon;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 2018
  • Apartment is a typical type of housing preferred by the majority of people. However, and defect disputes occur because various defects such as cracks, subsidence, breakage, water leakage, dew condensation and dropout are confirmed with numerous structures and finishing materials. From this point of view, this paper analyzes defect frequency and costs of each warranty period by work types, and estimates defect risks by using defect dispute cases. It examined about 5,337 defect items for 32 apartment over ten years old. In this paper, there are 10 types of work types and the warranty liability period is divided into 6 categories. Based on these categories, defect frequency and costs are investigated, and finally defect risk of the warranty liability period by work types confirmed. As a result of this analysis, it was found that defect risk in RC and finishing work is very high. Especially the RC work revealed that there is a high risk of trying from the third year onwards and it was found that the defect risk up to the second year is high in the finishing work. Due to aging of RC structure, the defect risk gradually increases, and finishing work initially cause defect disputes because of the housing environment.

Partial Conductivities, Nonstoichiometry and Defect Structure of a New Cathode Candidate $Y_{1-x}Ca_xFeO_{3-\delta}$

  • Kim, Chan-Soo;Yoo, Han-Ill
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.151-155
    • /
    • 1998
  • The total electrical conductivity, ionic conductivity, and nonstoichimetry of a new cathode material $Y_{1-x}Ca_xFeO_{3-\delta}$ (x=0.1) were measured as functions of temperature ($900\leqT/^{\circ}C\leq1100$) and oxygen partial pressure $(10^{-6}\leqPo_2/atm\leq0.21$). Isothermal variations of these properties with $Po_2$ support that the majority type of ionic defects are anti-Frenkel disorder which, however, has seldom been considered for perovskite-based oxides. The results are discussed in comparison with those reported on similar oxides.

  • PDF

Time Reversal Beam Focusing of Ultrasonic Array Transducer on a Defect in a Two Layer Medium

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.242-247
    • /
    • 2009
  • The ability of time reversal techniques to focus ultrasonic beams on the source location is important in many aspects of ultrasonic nondestructive evaluation. In this paper, we investigate the time reversal beam focusing of ultrasonic array sensors on a defect in layered media. Numerical modeling is performed using the commercially available software which employs a time domain finite difference method. Two different time reversal approaches are considered - the through transmission and the pulse-echo. Linear array sensors composed of N elements of line sources are used for signal reception/excitation, time reversal, and reemission in time reversal processes associated with the scattering source of a side-drilled hole located in the second layer of two layer structure. The simulation results demonstrate the time reversal focusing even with multiple reflections from the interface of layered structure. We examine the focusing resolution that is related to the propagation distance, the size of array sensor and the wavelength.